Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Demonstration of independent roles of proximal tubular reabsorption and intratubular load in the phenomenon of glomerulotubular balance during aortic constriction in the rat
Wolf E. Buentig, Laurence E. Earley
Wolf E. Buentig, Laurence E. Earley
Published January 1, 1971
Citation Information: J Clin Invest. 1971;50(1):77-89. https://doi.org/10.1172/JCI106486.
View: Text | PDF
Research Article

Demonstration of independent roles of proximal tubular reabsorption and intratubular load in the phenomenon of glomerulotubular balance during aortic constriction in the rat

  • Text
  • PDF
Abstract

The mechanism of glomerulotubular balance was investigated by microperfusion of the rat proximal tubule at two different rates before and after contriction of the aorta sufficient to produce a 50% reduction in whole kidney filtration rate and plasma flow. At a perfusion rate of 28 nl/min the absolute rate of proximal tubular reabsorption averaged 4.80±0.28 nl/mm·min in the absence of aortic constriction. Reducing the perfusion rate by one-half resulted in only a 22% decrease in the absolute rate of reabsorption, and imbalance between load and reabsorption resulted as fractional reabsorption of the perfused volume increased from 0.56 to 0.83 at 3 mm length of perfused tubule. These observations support other studies indicating that changing the load presented to the individual proximal tubule does not change reabsorptive rate sufficiently to result in glomerulotubular balance. Aortic constriction decreased the absolute rate of proximal tubular reabsorption approximately 50%, resulting in imbalance between load and reabsorption at the higher perfusion rate (fractional reabsorption of the perfused volume fell to 0.23 at 3 mm). Thus, the decrease in proximal tubular reabsorption necessary for glomerulotubular balance will occur independent of a change in the load presented for reabsorption. Balance between load and reabsorption was produced artificially by combining aortic constriction and a reduction in perfusion rate proportional to the reduction in whole kidney filtration rate. Mathematical analysis of the data suggests that the absolute rate of reabsorption along the accessible length of the proximal tubule is constant and is not proportional to the volume of fluid reaching a given site. Thus, there appears to be no contribution to glomerulotubular balance of any intra- or extratubular mechanism directly coupling load and the rate of proximal tubular reabsorption. It is concluded that glomerulotubular balance during aortic constriction is a consequence of hemodynamic effects of the maneuver to decrease filtration rate and the rate of proximal tubular reabsorption independently but in an approximately proportional manner.

Authors

Wolf E. Buentig, Laurence E. Earley

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 81 2
PDF 43 40
Scanned page 378 5
Citation downloads 47 0
Totals 549 47
Total Views 596
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts