Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106478

The effect of salicylate on the metabolism of normal and stimulated human lymphocytes in vitro

Lauren M. Pachman, Nancy B. Esterly, and Raymond D. A. Peterson

The Variety Club Research Center of the La Rabida-University of Chicago Institute, and the Department of Pediatrics,University of Chicago, Chicago, Illinois 60649

Find articles by Pachman, L. in: PubMed | Google Scholar

The Variety Club Research Center of the La Rabida-University of Chicago Institute, and the Department of Pediatrics,University of Chicago, Chicago, Illinois 60649

Find articles by Esterly, N. in: PubMed | Google Scholar

The Variety Club Research Center of the La Rabida-University of Chicago Institute, and the Department of Pediatrics,University of Chicago, Chicago, Illinois 60649

Find articles by Peterson, R. in: PubMed | Google Scholar

Published January 1, 1971 - More info

Published in Volume 50, Issue 1 on January 1, 1971
J Clin Invest. 1971;50(1):226–230. https://doi.org/10.1172/JCI106478.
© 1971 The American Society for Clinical Investigation
Published January 1, 1971 - Version history
View PDF
Abstract

The effect of salicylate on the metabolism of peripheral blood lymphocytes in tissue culture was investigated. Lymphocytes incubated with sodium salicylate at a concentration of 30 mg/100 ml showed increased glucose consumption, lactic acid production, and oxygen consumption, evidence for uncoupling of oxidative phosphorylation. No decrease in cell number or viability (trypan blue dye exclusion) was noted in salicylate-treated cultures. Normal DNA, RNA, and total protein synthesis measured by radioisotope incorporation was depressed in the salicylate-treated cultures. Increased DNA synthesis after the addition of a mitogen (PHA) or antigen (PPD) to the culture was strikingly suppressed by salicylate. The degree of suppression was proportional to the concentration of salicylate used. The effect on RNA and protein synthesis in stimulated lymphocytes was much less pronounced. Acetylsalicylic acid was found to be as active as sodium salicylate in suppressing DNA synthesis, but the p-OH congener (p-OH benzoic acid) did not alter cell respiration, glycolysis, viability, or DNA synthesis. The salicylate effect was reversible as evidenced by return of cellular reactivity upon removal of the drug from the media.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 226
page 226
icon of scanned page 227
page 227
icon of scanned page 228
page 228
icon of scanned page 229
page 229
icon of scanned page 230
page 230
Version history
  • Version 1 (January 1, 1971): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts