Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106475

The influence of graded degrees of chronic hypercapnia on the acute carbon dioxide titration curve

Marc B. Goldstein, F. John Gennari, and William B. Schwartz

1Department of Medicine, Tufts University School of Medicine, and the Renal Laboratory of the New England Medical Center Hospitals, Boston, Massachusetts 02111

Find articles by Goldstein, M. in: PubMed | Google Scholar

1Department of Medicine, Tufts University School of Medicine, and the Renal Laboratory of the New England Medical Center Hospitals, Boston, Massachusetts 02111

Find articles by Gennari, F. in: PubMed | Google Scholar

1Department of Medicine, Tufts University School of Medicine, and the Renal Laboratory of the New England Medical Center Hospitals, Boston, Massachusetts 02111

Find articles by Schwartz, W. in: PubMed | Google Scholar

Published January 1, 1971 - More info

Published in Volume 50, Issue 1 on January 1, 1971
J Clin Invest. 1971;50(1):208–216. https://doi.org/10.1172/JCI106475.
© 1971 The American Society for Clinical Investigation
Published January 1, 1971 - Version history
View PDF
Abstract

Studies were carried out to determine the influence of the chronic level of arterial carbon dioxide tension upon the buffering response to acute changes in arterial carbon dioxide tension. After chronic adaptation to six levels of arterial CO2 tension, ranging between 35 and 110 mm Hg, unanesthetized dogs underwent acute whole body CO2 titrations. In each instance a linear relationship was observed between the plasma hydrogen ion concentration and the arterial carbon dioxide tension. Because of this linear relationship, it has been convenient to compare the acute buffering responses among dogs in terms of the slope, dH+/dPaco2. With increasing chronic hypercapnia there was a decrease in this slope, i.e. an improvement in buffer capacity, which is expressed by the equation dH+/dPaco2=-0.005 (Paco2)chronic + 0.95. In effect, the ability to defend pH during acute titration virtually doubled as chronic Paco2 increased from 35 to 110 mm Hg.

The change in slope, dH+/dPaco2, was the consequence of the following two factors: the rise in plasma bicarbonate concentration which occurs with chronic hypercapnia of increasing severity, and the greater change in bicarbonate concentration which occurred during the acute CO2 titration in the animals with more severe chronic hypercapnia. These findings demonstrate the importance of the acid-base status before acute titration in determining the character of the carbon dioxide titration curve. They also suggest that a quantitative definition of the interplay between acute and chronic hypercapnia in man should assist in the rational analysis of acid-base disorders in chronic pulmonary insufficiency.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 208
page 208
icon of scanned page 209
page 209
icon of scanned page 210
page 210
icon of scanned page 211
page 211
icon of scanned page 212
page 212
icon of scanned page 213
page 213
icon of scanned page 214
page 214
icon of scanned page 215
page 215
icon of scanned page 216
page 216
Version history
  • Version 1 (January 1, 1971): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts