Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Angiotensin II in arterial and renal venous plasma and renal lymph in the dog
Michael D. Bailie, … , Floyd C. Rector Jr., Donald W. Seldin
Michael D. Bailie, … , Floyd C. Rector Jr., Donald W. Seldin
Published January 1, 1971
Citation Information: J Clin Invest. 1971;50(1):119-126. https://doi.org/10.1172/JCI106465.
View: Text | PDF
Research Article

Angiotensin II in arterial and renal venous plasma and renal lymph in the dog

  • Text
  • PDF
Abstract

Angiotensin II was determined by radioimmunoassay in systemic arterial, pulmonary arterial, and renal venous plasma and in renal hilar lymph in dogs. Levels of the peptide were determined prior to and during progressive graded hemorrhage or reduction in renal perfusion pressure. Levels of angiotensin II in plasma consistently rose during transit through the lung indicating pulmonary conversion of angiotensin I to angiotensin II. On the other hand, angiotensin II in the renal vein plasma was less than that in arterial plasma indicating renal extraction of the peptide from plasma. When renal hilar lymph was sampled under similar conditions, angiotensin II in lymph was consistently higher than that in arterial or renal venous plasma. Furthermore, in some experiments angiotensin II in lymph increased at a time when the concentration in plasma was undetectable. No evidence was found to indicate that angiotensin II in plasma entered renal lymph. It was concluded that angiotensin II levels in lymph reflected the concentration of angiotensin II in renal tissue. The data further suggested that angiotensin II is partially removed from arterial plasma by hydrolysis during transit through the kidney.

Authors

Michael D. Bailie, Floyd C. Rector Jr., Donald W. Seldin

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 153 5
PDF 56 15
Scanned page 276 2
Citation downloads 41 0
Totals 526 22
Total Views 548
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts