Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106416

Relation of renal cortical gluconeogenesis, glutamate content, and production of ammonia

Anthony S. Pagliara and A. David Goodman

1Division of Endocrinology and Metabolism, Department of Medicine, Albany Medical College, Albany, New York 12208

Find articles by Pagliara, A. in: PubMed | Google Scholar

1Division of Endocrinology and Metabolism, Department of Medicine, Albany Medical College, Albany, New York 12208

Find articles by Goodman, A. in: PubMed | Google Scholar

Published November 1, 1970 - More info

Published in Volume 49, Issue 11 on November 1, 1970
J Clin Invest. 1970;49(11):1967–1974. https://doi.org/10.1172/JCI106416.
© 1970 The American Society for Clinical Investigation
Published November 1, 1970 - Version history
View PDF
Abstract

Glutamate is an inhibitor of phosphate dependent glutaminase (PDG), and renal cortical glutamate is decreased in metabolic acidosis. It has been postulated previously that the rise in renal production of ammonia from glutamine in metabolic acidosis is due primarily to activation of cortical PDG as a consequence of the fall in glutamate. The decrease in cortical glutamate has been attributed to the increase in the capacity of cortex to convert glutamate to glucose in acidosis.

In the present study, administration of ammonium chloride to rats in an amount inadequate to decrease cortical glutamate increased the capacity of cortex to produce ammonia from glutamine in vitro and increased cortical PDG. Similarly, cortex from potassium-depleted rats had an increased capacity to produce ammonia and an increase in PDG, but glutamate content was normal. The glutamate content of cortical slices incubated at pH 7.1 was decreased, and that at 7.7 was increased, compared to slices incubated at 7.4, yet ammonia production was the same at all three pH levels. These observations suggest that cortical glutamate concentration is not the major determinant of ammonia production.

In potassium-depleted rats there was a 90% increase in the capacity of cortex to convert glutamate to glucose, yet cortical glutamate was not decreased. In vitro, calcium more than doubled conversion of glutamate to glucose by cortical slices without affecting the glutamate content of the slices, and theophylline suppressed conversion of glutamate to glucose yet decreased glutamate content. These observations indicate that the rate of cortical gluconeogenesis is not the sole determinant of cortical glutamate concentration.

The increase in cortical gluconeogenesis in acidosis and potassium depletion probably is not the primary cause of the increase in ammonia production in these states, but the rise in gluconeogenesis may contribute importantly to the maintenance of increased ammoniagenesis by accelerating removal of the products of glutamine degradation.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1967
page 1967
icon of scanned page 1968
page 1968
icon of scanned page 1969
page 1969
icon of scanned page 1970
page 1970
icon of scanned page 1971
page 1971
icon of scanned page 1972
page 1972
icon of scanned page 1973
page 1973
icon of scanned page 1974
page 1974
Version history
  • Version 1 (November 1, 1970): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts