Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106395

Effect of ethanol on ketone metabolism

André Lefèvre, Howard Adler, and Charles S. Lieber

Section of Liver Disease and Nutrition, Bronx VA Hospital, New York 10468

Department of Medicine, Mt. Sinai School of Medicine of the City University of New York, New York 10468

Find articles by Lefèvre, A. in: PubMed | Google Scholar

Section of Liver Disease and Nutrition, Bronx VA Hospital, New York 10468

Department of Medicine, Mt. Sinai School of Medicine of the City University of New York, New York 10468

Find articles by Adler, H. in: PubMed | Google Scholar

Section of Liver Disease and Nutrition, Bronx VA Hospital, New York 10468

Department of Medicine, Mt. Sinai School of Medicine of the City University of New York, New York 10468

Find articles by Lieber, C. in: PubMed | Google Scholar

Published October 1, 1970 - More info

Published in Volume 49, Issue 10 on October 1, 1970
J Clin Invest. 1970;49(10):1775–1782. https://doi.org/10.1172/JCI106395.
© 1970 The American Society for Clinical Investigation
Published October 1, 1970 - Version history
View PDF
Abstract

Ketonuria has been observed in alcoholics. To study the mechanism of this effect, healthy, volunteers were given adequate diets (36% of calories as lipid and 15% as protein) for 18 days, with isocaloric replacement of carbohydrate (46% of calories) by either ethanol or additional fat. The latter resulted in a high fat diet, with 82% of calories as lipid. After about 1 wk of alcohol, massive and persistent ketonuria developed. Compared with the control period, there was a 30-fold increase in fasting blood acetoacetate and β-hydroxybutyrate (P < 0.001). With the high fat diet, acetoacetate and β-hydroxybutyrate increased 8- to 10-fold (P < 0.001). In the postprandial state, ethanol also induced hyperketonemia, but less markedly than when ethanol followed an overnight fast. With low fat diets (5% of calories), alcohol (46% of total calories) did not induce ketonuria or hyperketonemia, suggesting that a combination of alcohol and dietary fat is necessary. The addition of alcohol to rat liver slices did not affect ketogenesis. In rats pretreated with alcohol for 3 days, however, ketonemia developed, hepatic glycogen was decreased, and liver slices (incubated with palmitate-14C and glucose) had a significant increase in acetoacetate production, when compared to carbohydrate pretreated controls. Alcohol pretreatment or addition of alcohol in vitro had no effect on acetoacetate utilization by rat diaphragms, and decreased only slightly the conversion of β-hydroxybutyrate-14C to 14CO2. Thus, the hyperketonemia and ketonuria observed after alcohol consumption cannot be attributed to an immediate effect of alcohol, but is the consequence of a delayed change in intermediary metabolism characterized by increased hepatic ketone production from fatty acids, possibly linked to ethanol-induced glycogen depletion and depression of citric acid cycle activity.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1775
page 1775
icon of scanned page 1776
page 1776
icon of scanned page 1777
page 1777
icon of scanned page 1778
page 1778
icon of scanned page 1779
page 1779
icon of scanned page 1780
page 1780
icon of scanned page 1781
page 1781
icon of scanned page 1782
page 1782
Version history
  • Version 1 (October 1, 1970): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts