The effects of hematocrit on renal hemodynamics and sodium excretion were studied in anesthetized dogs during both hydropenia and volume expansion. The hematocrit was decreased by isovolemic exchange with the animal's own previously harvested plasma and increased by isovolemic exchange with fresh, washed red blood cells. Renal perfusion pressure was maintained constant throughout the experiments by the adjustment of a suprarenal aortic clamp. During hydropenia, a decrease in hematocrit was associated with an increase in sodium and potassium excretion and solutefree water reabsorption. These changes were accompained by an increase in renal plasma flow and renal blood flow and a decrease in renal vascular resistance. Glomerular filtration rate was unchanged and filtration fraction was significantly decreased as hematocrit was lowered. Increasing hematocrit during hydropenia had the opposite effects on electrolyte excretion, solute-free water reabsorption, and renal hemodynamics. In another group of animals, hematocrit was lowered during volume expansion with either saline or plasma, then returned to the control level by isovolemic exchange with washed red blood cells. This increase in hematocrit during volume expansion had a similar effect on electrolyte excretion, solute-free water reabsorption, and renal hemodynamics as during hydropenia. These results therefore suggest that acute changes in hematocrit may significantly affect sodium excretion and renal hemodynamics during both hydropenia and volume expansion. The changes in solute-free water reabsorption and potassium excretion suggest that the alterations in hematocrit may affect primarily the reabsorption of sodium in the proximal tubule. The concommitant effects of hematocrit on renal vascular resistance and filtration fraction may mediate this change in sodium reabsorption by altering hydrostatic and oncotic pressures in the peritubular circulation.
Robert W. Schrier, Laurence E. Earley
Usage data is cumulative from June 2024 through June 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 118 | 19 |
46 | 14 | |
Scanned page | 393 | 1 |
Citation downloads | 52 | 0 |
Totals | 609 | 34 |
Total Views | 643 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.