Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

A comparison of the effects of glucose ingestion and NH4Cl acidosis on urinary calcium and magnesium excretion in man
Edward J. Lennon, Walter F. Piering
Edward J. Lennon, Walter F. Piering
Published July 1, 1970
Citation Information: J Clin Invest. 1970;49(7):1458-1465. https://doi.org/10.1172/JCI106363.
View: Text | PDF
Research Article

A comparison of the effects of glucose ingestion and NH4Cl acidosis on urinary calcium and magnesium excretion in man

  • Text
  • PDF
Abstract

Both glucose ingestion and NH4Cl acidosis have been reported to augment urinary calcium (UCa V) and magnesium (UMg V) excretion. Both also cause acidification of the urine and an increase in renal acid excretion. To examine whether a common mechanism of action was involved, the effects of glucose ingestion and NH4Cl acidosis on UCa V and UMg V were tested in the same subjects. Glucose ingestion caused significant increases in both UCa V and UMg V. During stable NH4Cl acidosis, UCa V increased significantly, while UMg V was unaffected. When a glucose load was given during acidosis, the separate effects of acidosis and glucose on UCa V were additive, whereas UMg V increased less than observed during normal acid-base balance. Although renal acid excretion increased and the urine was acidified after glucose in the normal steady state, when glucose was administered during NH4Cl acidosis urine pH rose and there was no change in renal acid excretion. We concluded that NH4Cl acidosis and glucose ingestion reduce the renal tubular reabsorption of magnesium and (or) calcium, but they act through separate mechanisms.

Authors

Edward J. Lennon, Walter F. Piering

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 139 8
PDF 49 9
Scanned page 361 3
Citation downloads 69 0
Totals 618 20
Total Views 638
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts