Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106336

Studies on the exaggerated natriuretic response to a saline infusion in the hypothyroid rat

Edward W. Holmes Jr. and Vincent A. DiScala

Renal Service, Department of Medicine, U. S. Public Health Service Hospital, Staten Island, New York 10304

Renal Division, Department of Medicine, The Mount Sinai School of Medicine, New York 10029

Find articles by Holmes, E. in: JCI | PubMed | Google Scholar

Renal Service, Department of Medicine, U. S. Public Health Service Hospital, Staten Island, New York 10304

Renal Division, Department of Medicine, The Mount Sinai School of Medicine, New York 10029

Find articles by DiScala, V. in: JCI | PubMed | Google Scholar

Published June 1, 1970 - More info

Published in Volume 49, Issue 6 on June 1, 1970
J Clin Invest. 1970;49(6):1224–1236. https://doi.org/10.1172/JCI106336.
© 1970 The American Society for Clinical Investigation
Published June 1, 1970 - Version history
View PDF
Abstract

The exaggerated natriuresis of hypothyroid rats receiving a 5% saline infusion was studied to determine the mechanism and the site within the nephron responsible for this increase in sodium excretion. Sodium clearance (CNa) and fractional sodium excretion were both demonstrated to be greater in hypothyroid rats for any amount of sodium infused. The rate of increase in fractional sodium excretion in response to saline loading was 3.4 times greater in hypothyroid animals. At the conclusion of the diuresis some of the hypothyroid animals excreted greater than 45% of the filtered sodium load, while no control animal excreted more than 12% of the filtered sodium load.

The mean clearance of insulin during the saline diuresis was 36.6% lower (P < 0.001) in the hypothyroid rats. D-Aldosterone given to hypothyroid animals 3 hr before the experiment did not alter the magnitude or rate of increase in fractional sodium excretion. Inulin space determinations in nephrectomized rats revealed that extracellular fluid volume was contracted by 17.1% in the hypothyroid rats (P < 0.01). Plasma sodium was not significantly different in hypothyroid and control animals.

A limit on solute free water reabsorption (TeH2O) per osmolar clearance (COsm) was demonstrated in the hypothyroid rats when these animals excreted greater than 12% of the filtered osmotic load. The limit on TeH2O formation was associated with an acceleration in the rate of sodium excretion and a decline in the rate of potassium excretion. Early in the diuresis when COsm, CNa, and TeH2O were comparable in hypothyroid and control rats, the filtered sodium load was 31% lower (P < 0.01) in the hypothyroid animals.

These findings indicate that diminished thyroid hormone activity decreases renal sodium reabsorptive capacity. Indirect evidence suggests that the distal and possibly the proximal tubules are the sites of this diminished sodium reabsorption in hypothyroid animals.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1224
page 1224
icon of scanned page 1225
page 1225
icon of scanned page 1226
page 1226
icon of scanned page 1227
page 1227
icon of scanned page 1228
page 1228
icon of scanned page 1229
page 1229
icon of scanned page 1230
page 1230
icon of scanned page 1231
page 1231
icon of scanned page 1232
page 1232
icon of scanned page 1233
page 1233
icon of scanned page 1234
page 1234
icon of scanned page 1235
page 1235
icon of scanned page 1236
page 1236
Version history
  • Version 1 (June 1, 1970): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts