Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Responses of saphenous and mesenteric veins to administration of dopamine
Allyn L. Mark, … , Michael G. Wendling, John W. Eckstein
Allyn L. Mark, … , Michael G. Wendling, John W. Eckstein
Published February 1, 1970
Citation Information: J Clin Invest. 1970;49(2):259-266. https://doi.org/10.1172/JCI106235.
View: Text | PDF
Research Article

Responses of saphenous and mesenteric veins to administration of dopamine

  • Text
  • PDF
Abstract

Others have observed that dopamine (3,4-dihydroxyphenylethylamine) constricts resistance vessels in skin, but dilates these vessels in the mesentery. We studied the effects of dopamine on cutaneous and mesenteric veins of dogs to see if this agent also produced qualitatively different effects on the tone of capacitance vessels (veins) in these vascular beds. The lateral saphenous or the left colic vein was perfused at constant flow with blood from a femoral artery. Pressures at the tip of the perfusion cannula and at the tip of a catheter 15 cm downstream were recorded continuously. Increases in the pressure gradient between these two points indicated venoconstriction; decreases indicated venodilatation. Dopamine and norepinephrine injected into the perfusion tubing caused constriction of both veins. The constriction was antagonized by blockade of alpha receptors. A dilator action of dopamine was not seen, even after alpha receptor blockade or in the presence of increased venous tone produced by serotonin, norepinephrine, or nerve stimulation. Reserpine and cocaine did not alter responses to dopamine in the saphenous vein; this suggests that the venoconstrictor action of dopamine results mainly from a direct effect on alpha receptors and that uptake into sympathetic nerve endings may not be important in regulating the amount of dopamine available to receptors in the saphenous vein.

Authors

Allyn L. Mark, Tetsuji Iizuka, Michael G. Wendling, John W. Eckstein

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 97 1
PDF 59 9
Scanned page 377 0
Citation downloads 59 0
Totals 592 10
Total Views 602
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts