Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106230

Gargoylism: hydrolysis of β-galactosides and tissue accumulation of galactose- and mannose-containing compounds

Björn Hultberg, Per-Arne Öckerman, and Arne Dahlqvist

Laboratory of Clinical Chemistry and the Research Department, University Hospital, S-220 05 Lund, Sweden

Find articles by Hultberg, B. in: PubMed | Google Scholar

Laboratory of Clinical Chemistry and the Research Department, University Hospital, S-220 05 Lund, Sweden

Find articles by Öckerman, P. in: PubMed | Google Scholar

Laboratory of Clinical Chemistry and the Research Department, University Hospital, S-220 05 Lund, Sweden

Find articles by Dahlqvist, A. in: PubMed | Google Scholar

Published February 1, 1970 - More info

Published in Volume 49, Issue 2 on February 1, 1970
J Clin Invest. 1970;49(2):216–224. https://doi.org/10.1172/JCI106230.
© 1970 The American Society for Clinical Investigation
Published February 1, 1970 - Version history
View PDF
Abstract

The sugars present in hydrolyzed extracts of human liver and brain were analyzed by gasliquid chromatography after conversion to their alditol acetates. The samples analyzed were obtained from control subjects, patients with gargoylism, and patients with a few other kinds of storage disorders. Accumulation of galactose was demonstrated in the liver and the brain of two patients with gargoylism, and in the liver samples, high levels of mannose were found too. We also studied the hydrolysis of a number of galactosides by homogenates from different tissues in the control subjects and in the patients. Separation methods and kinetic studies demonstrated the presence in normal human tissues of two different β-galactosidases, which we call enzyme A and enzyme B, respectively. Enzyme A hydrolyzed all the β-galactosides tested. Enzyme B hydrolyzed the synthetic substrates tested (4-methylumbelliferyl-, p-nitrophenyl-, o-nitrophenyl-, and phenyl-β-galactoside) but not the natural substrates tested (ceramide-β-galactoside, ceramide lactoside, transferrin glycopeptide, and keratan sulfate). Enzyme B also exerted β-glucosidase activity. In various tissues from patients with gargoylism, deficiency of β-galactosidase A could be demonstrated.

It is suggested that the high level of galactose found in the hydrolyzed extracts of tissues from gargoylism patients is due to storage of galactose-rich glycosaminoglycans and glycopeptides, and that this storage is a result of the deficiency of β-galactosidase A.

The high level of mannose in the liver from gargoylism patients seems to indicate storage of glycopeptide, adding a new group of substances to those known to be stored in gargoylism.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 216
page 216
icon of scanned page 217
page 217
icon of scanned page 218
page 218
icon of scanned page 219
page 219
icon of scanned page 220
page 220
icon of scanned page 221
page 221
icon of scanned page 222
page 222
icon of scanned page 223
page 223
icon of scanned page 224
page 224
Version history
  • Version 1 (February 1, 1970): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts