Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106211

Pathways of fatty acid metabolism in human platelets

Phin Cohen, Arie Derksen, and Hendrik van den Bosch

Biochemistry Department, University of Utrecht, Utrecht, Holland

Department of Medicine, Harvard Medical School and the Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Find articles by Cohen, P. in: PubMed | Google Scholar

Biochemistry Department, University of Utrecht, Utrecht, Holland

Department of Medicine, Harvard Medical School and the Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Find articles by Derksen, A. in: PubMed | Google Scholar

Biochemistry Department, University of Utrecht, Utrecht, Holland

Department of Medicine, Harvard Medical School and the Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Find articles by van den Bosch, H. in: PubMed | Google Scholar

Published January 1, 1970 - More info

Published in Volume 49, Issue 1 on January 1, 1970
J Clin Invest. 1970;49(1):128–139. https://doi.org/10.1172/JCI106211.
© 1970 The American Society for Clinical Investigation
Published January 1, 1970 - Version history
View PDF
Abstract

The metabolic fate of 14C-labeled fatty acids which have been incubated with human platelets, has been traced. The following has been shown. (a) Intact platelets have a considerable capacity to oxidize fatty acids. (b) When tracer amounts of four of the most common fatty acids in normal plasma were incubated with platelets, each showed a distinctive pattern of uptake among neutral lipids and phospholipids. With regard to the latter, it was shown that these distribution patterns were, in most cases, similar to those of the fatty acids found in natural platelet phospholipids. (c) By increasing the time of incubation or the amount of added oleic acid, the distribution of oleic acid uptake between lecithin and other phosphoglycerides was altered so that a larger share was incorporated into the latter. (d) The effects of added lysolecithin or lysoethanolamine phosphoglycerides on oleic acid incorporation into platelet phosphoglycerides are quite variable. At low concentrations, added lysolecithin functions chiefly as a reaction partner for oleic acid. Added adenosine triphosphate and CoASH augment the incorporation of oleic acid into lecithin over a wide range of added lysolecithin (12.5-500 μmoles/liter). At higher concentrations of added lysolecithin, in the absence of ATP and CoASH, oleic acid incorporation into lecithin is considerably reduced. Also, added lysolecithin and lysoethanolamine phosphoglycerides, in the absence of ATP and CoASH, are able, at certain concentrations, to stimulate oleic acid incorporation into all except the serine phosphoglycerides. (e) Platelets appear to have a de novo pathway for renewal of lecithin.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 128
page 128
icon of scanned page 129
page 129
icon of scanned page 130
page 130
icon of scanned page 131
page 131
icon of scanned page 132
page 132
icon of scanned page 133
page 133
icon of scanned page 134
page 134
icon of scanned page 135
page 135
icon of scanned page 136
page 136
icon of scanned page 137
page 137
icon of scanned page 138
page 138
icon of scanned page 139
page 139
Version history
  • Version 1 (January 1, 1970): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts