Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106209

Respiratory mechanics and dust exposure in byssinosis

A. Bouhuys and K. P. Van de Woestijne

John B. Pierce Foundation Laboratory, Yale University School of Medicine, New Haven, Connecticut 06510

Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06510

Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06510

Find articles by Bouhuys, A. in: JCI | PubMed | Google Scholar

John B. Pierce Foundation Laboratory, Yale University School of Medicine, New Haven, Connecticut 06510

Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06510

Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06510

Find articles by Van de Woestijne, K. in: JCI | PubMed | Google Scholar

Published January 1, 1970 - More info

Published in Volume 49, Issue 1 on January 1, 1970
J Clin Invest. 1970;49(1):106–118. https://doi.org/10.1172/JCI106209.
© 1970 The American Society for Clinical Investigation
Published January 1, 1970 - Version history
View PDF
Abstract

Acute exposures to hemp dust, in healthy subjects as well as hemp workers with byssinosis, resulted in two different responses. Men with symptoms (chest tightness, coughing, and wheezing) after exposure showed decreases of forced expiratory volumes (FEV1.0), flow rates on maximum expiratory flow-volume (MEFV) curves, and of vital capacity (VC), while airway conductance (Gaw: TGV ratio) did not decrease significantly (“flow rate response”). Men without symptoms after exposure showed no changes of VC, FEV1.0, and MEFV curves, but had a significantly decreased airway conductance (“conductance response”). The flow rate response is attributed to a pharmacological bronchoconstrictor effect of hemp dust on small airways, the conductance response to a mechanical or reflex effect of hemp dust on large airways. Both responses were abolished by a bronchodilator drug. The type of response reflects a difference between individuals and is not related to age, smoking habits, or prior exposure history. Men with normal control function data had either a flow rate or a conductance response. All men with abnormal control data had a flow rate response.

Long-term hemp dust exposure causes irreversible obstructive lung disease, in particular among men who respond to acute dust exposure with symptoms and flow rate decreases. The detection of this response, with FEV1.0 measurements and MEFV curves, is essential in the study of byssinosis. Decreases of airway conductance after dust exposure have no consistent relation to the development of clinical symptoms. The relative value of measurements of maximum expiratory flow rates and of airway conductance in other lung diseases needs to be reassessed.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 106
page 106
icon of scanned page 107
page 107
icon of scanned page 108
page 108
icon of scanned page 109
page 109
icon of scanned page 110
page 110
icon of scanned page 111
page 111
icon of scanned page 112
page 112
icon of scanned page 113
page 113
icon of scanned page 114
page 114
icon of scanned page 115
page 115
icon of scanned page 116
page 116
icon of scanned page 117
page 117
icon of scanned page 118
page 118
Version history
  • Version 1 (January 1, 1970): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts