Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106150

Familial renal glycosuria: a genetic reappraisal of hexose transport by kidney and intestine

Louis J. Elsas and Leon E. Rosenberg

Division of Medical Genetics, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06510

Division of Medical Genetics, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06510

Find articles by Elsas, L. in: PubMed | Google Scholar

Division of Medical Genetics, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06510

Division of Medical Genetics, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06510

Find articles by Rosenberg, L. in: PubMed | Google Scholar

Published October 1, 1969 - More info

Published in Volume 48, Issue 10 on October 1, 1969
J Clin Invest. 1969;48(10):1845–1854. https://doi.org/10.1172/JCI106150.
© 1969 The American Society for Clinical Investigation
Published October 1, 1969 - Version history
View PDF
Abstract

Renal glucose titration studies were carried out in 10 members of two pedigrees with familial renal glycosuria to test the accepted hypothesis of autosomal dominant inheritance and to investigate the genetic significance of “type A” and “type B” renal glycosuria. In one family, a brother and sister each had a moderately reduced threshold and tubular maximum for glucose (type A), but both of their parents reabsorbed glucose normally. In the second family, two brothers had severe type A renal glycosuria, their mother and one brother had a mild type A defect, and another brother demonstrated a reduced threshold, an exaggerated splay, and a normal tubular maximum, indicative of type B glycosuria.

Hexose transport by intestinal mucosa was also investigated in controls and in the three brothers with the most severe renal glycosuria. D-glucose-14C and 3-O-methylglucose-14C were accumulated by jejunal mucosa from controls by processes which were saturable and concentrative. No differences in hexose transport were observed in the patients with renal glycosuria.

We conclude that familial renal glycosuria can be inherited as an autosomal recessive trait; that mild and severe type A renal glycosuria and type B renal glycosuria can occur in the same pedigree; and that defective reabsorption of glucose by the kidney need not be accompanied by abnormalities in intestinal glucose transport. These findings indicate that glucose transport in the gut and kidney are not mediated by identical mechanisms, and that several different mutations are responsible for the phenotypic variability in familial renal glycosuria.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1845
page 1845
icon of scanned page 1846
page 1846
icon of scanned page 1847
page 1847
icon of scanned page 1848
page 1848
icon of scanned page 1849
page 1849
icon of scanned page 1850
page 1850
icon of scanned page 1851
page 1851
icon of scanned page 1852
page 1852
icon of scanned page 1853
page 1853
icon of scanned page 1854
page 1854
Version history
  • Version 1 (October 1, 1969): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts