The characteristics of degradation of reticulocyte ribonucleic acid (RNA) and ribosomes were studied in a whole erythroid cell lysate system. The process followed Michaelis-Menten kinetics, and indicated that RNA degradation in the erythroid cell is mediated by an enzyme previously isolated from reticulocyte hemolysates. Erythroid cell RNase activity had a temperature optimum of 50°C, a pH optimum of 7.0, was not energy dependent, was heat labile at physiologic pH, and was inhibited by Mg++, Ca++, and exposure to bentonite and deoxycholate. Free sulfhydryl groups were not essential for RNase activity. Of the substrates occurring naturally within the erythroid cell, isolated ribosomal RNA was most susceptible to the action of the enzyme, intact ribosomes least susceptible, and transfer RNA intermediate between them. Natural substrates were degraded completely to nucleotides in cell lysates. Competitive inhibition studies indicate that one enzyme system is capable of degrading both RNA and ribosomes, although the existence of more than one enzyme has not been excluded. Erythroid cell lysates quickly broke down polyribosomes into single ribosomes. The more rapid degradation of ribosomes, as compared with transfer RNA, which occurs in vivo, as opposed to findings in vitro, suggests that there is a special intracellular mechanism responsible for ribosome degradation in the maturing erythroid cell.
Edward R. Burka
Usage data is cumulative from February 2025 through February 2026.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 160 | 9 |
| 88 | 10 | |
| Figure | 0 | 1 |
| Scanned page | 356 | 1 |
| Citation downloads | 97 | 0 |
| Totals | 701 | 21 |
| Total Views | 722 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.