Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106035

Influence of the thyroid state on left ventricular tension-velocity relations in the intact, sedated dog

Roger R. Taylor, James W. Covell, and John Ross Jr.

1Cardiology Branch, National Heart Institute, National Institutes of Health, Bethesda, Maryland 20014

Find articles by Taylor, R. in: JCI | PubMed | Google Scholar

1Cardiology Branch, National Heart Institute, National Institutes of Health, Bethesda, Maryland 20014

Find articles by Covell, J. in: JCI | PubMed | Google Scholar

1Cardiology Branch, National Heart Institute, National Institutes of Health, Bethesda, Maryland 20014

Find articles by Ross, J. in: JCI | PubMed | Google Scholar

Published April 1, 1969 - More info

Published in Volume 48, Issue 4 on April 1, 1969
J Clin Invest. 1969;48(4):775–784. https://doi.org/10.1172/JCI106035.
© 1969 The American Society for Clinical Investigation
Published April 1, 1969 - Version history
View PDF
Abstract

The mechanical properties of left ventricular contraction were described in terms of tension, velocity, length, and time in closed-chest, sedated normal, hypothyroid, and hyperthyroid dogs. Heart rate was controlled at 150 beats/min, and instantaneous contractile element velocity was calculated from left ventricular pressure and its first derivative during isovolumic left ventricular contractions, produced by sudden balloon occlusion of the ascending aorta during diastole. Wall tension was derived from ventricular pressure and volume, the latter being obtained from the pressure-volume relation of the arrested ventricle, and tension-velocity relations were analyzed over a range of ventricular endiastolic volumes. At any level of ventricular volume, the hypothyroid state was associated with a displacement of the tension-velocity relation of the left ventricle downwards and to the left, and the time to peak tension was prolonged (154 msec, normal 139 msec). In the hyperthyroid state, the tension-velocity relation of the left ventricle was displaced upwards and to the right, and the time to peak tension was reduced (80 msec). The changes in the tension-velocity relations indicate that the inotropic state of the left ventricle in the intact dog varies directly with the animal's thyroid state. This influence on myocardial contractility necessarily constitutes an important and integral part of the response of the intact circulation to altered thyroid state.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 775
page 775
icon of scanned page 776
page 776
icon of scanned page 777
page 777
icon of scanned page 778
page 778
icon of scanned page 779
page 779
icon of scanned page 780
page 780
icon of scanned page 781
page 781
icon of scanned page 782
page 782
icon of scanned page 783
page 783
icon of scanned page 784
page 784
Version history
  • Version 1 (April 1, 1969): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts