Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106006

Indicator dilution measurements of extravascular water in the lungs

Carl A. Goresky, Robert F. P. Cronin, and Brita E. Wangel

1The McGill University Medical Clinic, Montreal General Hospital, Montreal 100, Quebec, Canada

Find articles by Goresky, C. in: PubMed | Google Scholar

1The McGill University Medical Clinic, Montreal General Hospital, Montreal 100, Quebec, Canada

Find articles by Cronin, R. in: PubMed | Google Scholar

1The McGill University Medical Clinic, Montreal General Hospital, Montreal 100, Quebec, Canada

Find articles by Wangel, B. in: PubMed | Google Scholar

Published March 1, 1969 - More info

Published in Volume 48, Issue 3 on March 1, 1969
J Clin Invest. 1969;48(3):487–501. https://doi.org/10.1172/JCI106006.
© 1969 The American Society for Clinical Investigation
Published March 1, 1969 - Version history
View PDF
Abstract

Multiple indicator dilution studies of the pulmonary circulation were carried out in conscious, resting and exercising, and anesthetized dogs under conditions where there was no pulmonary edema. Labeled red cells, water, and albumin were injected together into the pulmonary artery, and effluent dilution patterns were obtained from the descending thoracic aorta. The product of the mean transit time differences between labeled water and red cells, and the pulmonary water flow was used to estimate extravascular parenchymatous water; and this was expressed as a proportion of the water content of the blood-drained lung at postmortem examination. These estimates of the proportional water content were found to increase with flow, and to approach an asymptotic value. Reconsideration of the flow patterns in capillaries, however, led to the postulate that extravascular water should be calculated, utilizing as the appropriate vascular reference a substance that uniformly labels the water in red cells and plasma, and which is confined to the circulation, rather than a tracer that only labels red cells. The mean transit time of this substance is approximated by the sum of the mean transit times of labeled red cells and albumin, each weighted according to the proportion of the water content of blood present in that phase. The values for lung water content so computed also increased with flow, and appeared to approach an asymptote that corresponded to approximately two-thirds of the wet lung weight. The estimated values for the water space after pentobarbital anesthesia corresponded to the lower values obtained in the resting conscious animals. When the anesthetized animals were also bled, the estimated water space was disproportionately large, in relation to the previous values. These experimental results support the hypothesis that dilutional estimates of the lung water space reflect pulmonary capillary filling; that this filling increases with exercise; and that a relative increase in filling also occurs as part of the response to hemorrhage.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 487
page 487
icon of scanned page 488
page 488
icon of scanned page 489
page 489
icon of scanned page 490
page 490
icon of scanned page 491
page 491
icon of scanned page 492
page 492
icon of scanned page 493
page 493
icon of scanned page 494
page 494
icon of scanned page 495
page 495
icon of scanned page 496
page 496
icon of scanned page 497
page 497
icon of scanned page 498
page 498
icon of scanned page 499
page 499
icon of scanned page 500
page 500
icon of scanned page 501
page 501
Version history
  • Version 1 (March 1, 1969): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts