Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106005

Micropuncture study of water, electrolytes, and urea movements along the loops of henle in psammomys

C. de Rouffignac and F. Morel

Département de Biologie, Centre d'Etudes Nucléaires de Saclay, Saclay, France

Find articles by de Rouffignac, C. in: PubMed | Google Scholar

Département de Biologie, Centre d'Etudes Nucléaires de Saclay, Saclay, France

Find articles by Morel, F. in: PubMed | Google Scholar

Published March 1, 1969 - More info

Published in Volume 48, Issue 3 on March 1, 1969
J Clin Invest. 1969;48(3):474–486. https://doi.org/10.1172/JCI106005.
© 1969 The American Society for Clinical Investigation
Published March 1, 1969 - Version history
View PDF
Abstract

The mechanism by which the osmotic pressure increases in tubular fluid along the descending limb of the loop of Henle was examined in Psammomys undergoing salt diuresis. In two series of experiments, micropuncture samples were collected either from proximal and distal convolutions at the surface of the cortex, or from loops of Henle and collecting ducts at the surface of the extrarenal part of the papilla. Inulin-3H, urea-14C, Na+, and K+ concentrations, as well as osmotic pressure, were determined in all micropuncture samples.

Net movements of water along the descending and ascending limbs of the loop could not be deduced by comparing inulin data obtained from convoluted tubules and from loops of Henle, since there appeared to be a large difference in the filtration rate of the superficial glomeruli (9 nl/min) and the deep ones (21.4 nl/min) under the conditions of these experiments.

The results indicate that no large net movement of water occurred along the loop since a) only 23% of the filtrate was reabsorbed along the loop of Henle (including pars recta) of superficial nephrons despite the fact that all these loops reached markedly hypertonic regions; b) there was no positive correlation between (F/P)In in early distal samples and the simultaneous osmotic pressure of the urine; c) when (F/P)In and (F/P)Osm in loop samples were correlated, the increase in inulin concentration accounted only for 15% of the increase in osmotic pressure. Therefore, 85% of the concentrating process taking place along the descending limb must have resulted from net addition of solutes; this was directly supported by Na+ and K+ measurements in the loop samples, which showed that, at the tip of the loops, the Na+ and K+ flow rates were correlated to the osmotic pressure. Moreover, since the load of Na+ urea flow rate in superficial early distal tubules was constant and independent of the urinary osmotic pressure, it is suggested that a medullary recycling of both ions occurred between ascending and descending limbs.

Urea-14C concentration in the loop samples indicates a net addition of urea into the descending limb; the mean and K+ delivered to the distal superficial tubules was 4.18 times its filtration rate, suggesting a recycling of urea from collecting ducts to Henle's loops. The permeability properties of the wall of the thin descending limb are discussed in relation to the obtained results.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 474
page 474
icon of scanned page 475
page 475
icon of scanned page 476
page 476
icon of scanned page 477
page 477
icon of scanned page 478
page 478
icon of scanned page 479
page 479
icon of scanned page 480
page 480
icon of scanned page 481
page 481
icon of scanned page 482
page 482
icon of scanned page 483
page 483
icon of scanned page 484
page 484
icon of scanned page 485
page 485
icon of scanned page 486
page 486
Version history
  • Version 1 (March 1, 1969): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts