Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Influence of 2,3-diphosphoglycerate metabolism on sodium-potassium permeability in human red blood cells: studies with bisulfite and other redox agents
John C. Parker
John C. Parker
Published January 1, 1969
Citation Information: J Clin Invest. 1969;48(1):117-125. https://doi.org/10.1172/JCI105960.
View: Text | PDF
Research Article

Influence of 2,3-diphosphoglycerate metabolism on sodium-potassium permeability in human red blood cells: studies with bisulfite and other redox agents

  • Text
  • PDF
Abstract

It is known that bisulfite ions can selectively deplete red blood cells of 2,3-diphosphoglycerate (2,3-DPG). Studies of the effects of bisulfite on sodium-potassium permeability and metabolism were undertaken to clarify the physiologic role of the abundant quantities of 2,3-DPG in human erythrocytes. Treatment of cells with bisulfite results in a reversible increase in the passive permeability to Na and K ions. Metabolism of glucose to lactate is increased, with a rise in the intracellular ratio of fructose diphosphate to hexose monophosphate. Cell 2,3-DPG is quantitatively converted to pyruvate and inorganic phosphate. The permeability effects of bisulfite are countered by ethacrynic acid and by such oxidizing agents as pyruvate and methylene blue. Taken together, the results suggest that the effects on Na-K flux of bisulfite are related more to the reducing potential of this anion than to its capacity to deplete cells of 2,3-DPG.

Authors

John C. Parker

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 151 11
PDF 75 5
Scanned page 388 3
Citation downloads 83 0
Totals 697 19
Total Views 716
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts