Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI105956

Effect of diphenylhydantoin on synaptosome sodium-potassium-ATPase

Barry W. Festoff and Stanley H. Appel

Division of Neurology, Duke University Medical Center, Durham, North Carolina 27706

Find articles by Festoff, B. in: PubMed | Google Scholar

Division of Neurology, Duke University Medical Center, Durham, North Carolina 27706

Find articles by Appel, S. in: PubMed | Google Scholar

Published December 1, 1968 - More info

Published in Volume 47, Issue 12 on December 1, 1968
J Clin Invest. 1968;47(12):2752–2758. https://doi.org/10.1172/JCI105956.
© 1968 The American Society for Clinical Investigation
Published December 1, 1968 - Version history
View PDF
Abstract

Previous studies have demonstrated that electrically induced seizures in rat result in an increased brain intracellular sodium which can be decreased by treatment with sodium diphenylhydantoin (DPH). The correlation of cation transport with membrane-oriented sodium-potassium-adenosine triphosphatase (Na-K-ATPase) prompted an investigation of the effect of DPH upon ATPase enzyme activity.

Rat cerebral cortical synaptosomes isolated in Ficoll gradients were employed as the source for Na-K-ATPase. With 50 mM Na, 10 mM K, 7.5 mM Mg, and 1.8 mM ATP, the specific activity of the preparation was 70 μmoles Pi released/mg synaptosomal protein per 30 min. The ionic and substrate concentrations yielding one-half maximal velocity were 0.5 mM K, 5 mM Na, and 8.5 × 10-5 M ATP, respectively.

At 50 mM Na and 0.2 mM K, DPH produced an average of 92% stimulation of Pi release above control. The ratio of Na:K rather than the absolute levels of the ions was critical in determining the effect of DPH. DPH produced significant stimulation of enzyme activity under conditions of a high Na:K ratio (25-50:1). At ratios of 5-10:1, DPH produced little or no effect, and at low Na:K ratios (less than 5:1), DPH was inhibitory. Under all ionic conditions examined, DPH produced no apparent change in enzyme affinity for ATP.

Assuming the proposed association of Na-K-ATPase with cation transport in brain, the data suggest the possibility that DPH may control seizures by its stimulation of Na-K-ATPase activity.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2752
page 2752
icon of scanned page 2753
page 2753
icon of scanned page 2754
page 2754
icon of scanned page 2755
page 2755
icon of scanned page 2756
page 2756
icon of scanned page 2757
page 2757
icon of scanned page 2758
page 2758
Version history
  • Version 1 (December 1, 1968): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts