Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Degradation of collagen by a human granulocyte collagenolytic system
Gerald S. Lazarus, John R. Daniels, Robert S. Brown, Howard A. Bladen, Harold M. Fullmer
Gerald S. Lazarus, John R. Daniels, Robert S. Brown, Howard A. Bladen, Harold M. Fullmer
View: Text | PDF
Research Article

Degradation of collagen by a human granulocyte collagenolytic system

  • Text
  • PDF
Abstract

This report suggests a mechanism for collagen degradation mediated by human granulocytic leukocytes. A specific collagenase, which is extractable from human granulocytes, has been partially purified by DEAE chromatography. This collagenolytic enzyme is operative at physiological pH and is inhibited by EDTA, cysteine, and reduced glutathione but not by human serum. The enzyme cleaves the collagen molecule into two specific products, without loss of helical conformation. Electron micrographs of segment long spacing aggregates indicate that the cleavage occurs one-quarter of the length from the carboxy terminal end of the molecule. Experiments with crude extracts from granulocytes suggest that the specific products of granulocyte collagenase activity are then degraded by other proteases present in the human granulocyte.

Authors

Gerald S. Lazarus, John R. Daniels, Robert S. Brown, Howard A. Bladen, Harold M. Fullmer

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 281 4
PDF 70 2
Scanned page 312 0
Citation downloads 100 0
Totals 763 6
Total Views 769
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts