Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI105864

Aldosterone hypersecretion in “non-salt-losing” congenital adrenal hyperplasia

Frederic C. Bartter, Robert I. Henkin, and George T. Bryan

Clinical Endocrinology Branch, National Heart Institute, Bethesda, Maryland 20014

Department of Pediatrics, Division of Endocrinology, University of Texas Medical Branch, Galveston, Texas 77550

Find articles by Bartter, F. in: PubMed | Google Scholar

Clinical Endocrinology Branch, National Heart Institute, Bethesda, Maryland 20014

Department of Pediatrics, Division of Endocrinology, University of Texas Medical Branch, Galveston, Texas 77550

Find articles by Henkin, R. in: PubMed | Google Scholar

Clinical Endocrinology Branch, National Heart Institute, Bethesda, Maryland 20014

Department of Pediatrics, Division of Endocrinology, University of Texas Medical Branch, Galveston, Texas 77550

Find articles by Bryan, G. in: PubMed | Google Scholar

Published August 1, 1968 - More info

Published in Volume 47, Issue 8 on August 1, 1968
J Clin Invest. 1968;47(8):1742–1752. https://doi.org/10.1172/JCI105864.
© 1968 The American Society for Clinical Investigation
Published August 1, 1968 - Version history
View PDF
Abstract

Patients with the “non-salt-losing” form of the adrenogenital syndrome were studied before and after suppression of adrenal cortical activity with carbohydrate-active steroids. The response of aldosterone secretion to sodium deprivation was measured; in some patients response to adrenocorticotropic hormone (ACTH) was measured as well.

The aldosterone secretion was normal and responded normally to sodium deprivation in all patients studied during suppression with carbohydrate-active steroids. This finding suggests that 21-hydroxylation of progesterone is normal in this syndrome.

The sole abnormality in the production of aldosterone in these patients was found to be excessive secretion of aldosterone while they were not receiving suppressive doses of carbohydrate-active steroids. This finding strongly supports the view that the biogenetic pathways through which aldosterone is produced from progesterone are intact in this syndrome.

No patient showed hypertension or hypokalemic alkalosis despite very high aldosterone secretion rates. This observation suggests that the hyper-aldosteronism is secondary to a tendency to sodium loss in the patient whose ACTH production is not suppressed.

These studies provide additional evidence in support of the hypothesis that the salt-losing and “non-salt-losing” forms of adrenogenital syndrome are genetically and biochemically distinct.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1742
page 1742
icon of scanned page 1743
page 1743
icon of scanned page 1744
page 1744
icon of scanned page 1745
page 1745
icon of scanned page 1746
page 1746
icon of scanned page 1747
page 1747
icon of scanned page 1748
page 1748
icon of scanned page 1749
page 1749
icon of scanned page 1750
page 1750
icon of scanned page 1751
page 1751
icon of scanned page 1752
page 1752
Version history
  • Version 1 (August 1, 1968): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts