Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI105780

Myocardial mechanics in aortic and mitral valvular regurgitation: the concept of instantaneous impedance as a determinant of the performance of the intact heart

Charles W. Urschel, James W. Covell, Edmund H. Sonnenblick, John Ross Jr., and Eugene Braunwald

1Cardiology Branch, National Heart Institute, Bethesda, Maryland 20014

Find articles by Urschel, C. in: PubMed | Google Scholar

1Cardiology Branch, National Heart Institute, Bethesda, Maryland 20014

Find articles by Covell, J. in: PubMed | Google Scholar

1Cardiology Branch, National Heart Institute, Bethesda, Maryland 20014

Find articles by Sonnenblick, E. in: PubMed | Google Scholar

1Cardiology Branch, National Heart Institute, Bethesda, Maryland 20014

Find articles by Ross, J. in: PubMed | Google Scholar

1Cardiology Branch, National Heart Institute, Bethesda, Maryland 20014

Find articles by Braunwald, E. in: PubMed | Google Scholar

Published April 1, 1968 - More info

Published in Volume 47, Issue 4 on April 1, 1968
J Clin Invest. 1968;47(4):867–883. https://doi.org/10.1172/JCI105780.
© 1968 The American Society for Clinical Investigation
Published April 1, 1968 - Version history
View PDF
Abstract

The effects on myocardial mechanics of acute, artificial aortic and mitral regurgitation were studied in the dog to determine the manner in which the changes in load induced by valvular regurgitation alter ventricular performance. With mitral and aortic regurgitant volumes of approximately the same magnitude as the forward stroke volume, immediate increases occurred in total stroke volume, left ventricular enddiastolic pressure, and peak ejection velocity, whereas contractility remained unchanged. Although calculated myocardial fiber tension rose, the rate of decline of tension during ejection was accelerated with regurgitation due to the more rapid decrease in ventricular size. Average tension therefore decreased relative to average pressure. As a consequence of the increased fiber length and this unloading, contractile element velocity, work, and power were increased. Despite unchanged contractility of the myocardium, the ejection fraction rose with both aortic and mitral regurgitation.

When regurgitant beats were compared with control beats at a constant end-diastolic volume, ventricular stroke volume, work, power, and ejection fraction, as well as contractile element velocity, work, and power consistently increased. Thus, reduction of instantaneous impedance to ejection allowed the ventricle to empty further, reducing ventricular wall tension with a resultant increase in the velocity of shortening. External energy output was increased despite unchanged contractility and diastolic fiber length. It is concluded that the impedance to ejection and myocardial fiber tension during ejection govern the velocity and extent of contractile element shortening, and hence affect stroke volume, peak aortic flow rate, and ejection fraction. The alterations of ventricular function accompanying valvular regurgitation can be explained by an evaluation of the effects of these lesions on the instantaneous impedance to left ventricular ejection.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 867
page 867
icon of scanned page 868
page 868
icon of scanned page 869
page 869
icon of scanned page 870
page 870
icon of scanned page 871
page 871
icon of scanned page 872
page 872
icon of scanned page 873
page 873
icon of scanned page 874
page 874
icon of scanned page 875
page 875
icon of scanned page 876
page 876
icon of scanned page 877
page 877
icon of scanned page 878
page 878
icon of scanned page 879
page 879
icon of scanned page 880
page 880
icon of scanned page 881
page 881
icon of scanned page 882
page 882
icon of scanned page 883
page 883
Version history
  • Version 1 (April 1, 1968): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts