Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI105724

Effects of alpha adrenergic blockade and tissue catecholamine depletion on pulmonary vascular response to hypoxia

Eric D. Silove and Robert F. Grover

Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, University of Colorado Medical Center, Denver, Colorado

Find articles by Silove, E. in: PubMed | Google Scholar

Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, University of Colorado Medical Center, Denver, Colorado

Find articles by Grover, R. in: PubMed | Google Scholar

Published February 1, 1968 - More info

Published in Volume 47, Issue 2 on February 1, 1968
J Clin Invest. 1968;47(2):274–285. https://doi.org/10.1172/JCI105724.
© 1968 The American Society for Clinical Investigation
Published February 1, 1968 - Version history
View PDF
Abstract

The highly reactive pulmonary vascular bed of the neonatal calf was utilized to determine whether the hypoxic pulmonary pressor response is modified by α-adrenergic blockade with phenoxybenzamine (Group A) or by tissue catecholamine depletion with reserpine (Group B). In addition, in Group A, the effects of hypoxia on the pulmonary circulation were compared and contrasted with those of l-norepinephrine (α-receptor stimulator) and isoproterenol (β-receptor stimulator).

In Group A, changes in pulmonary vascular resistance were calculated from measurements of appropriate pressures and of pulmonary blood flow (electromagnetic flowmeter). The increase in pulmonary vascular resistance produced by hypoxia was not diminished by α-adrenergic blockade. However, blockade abolished the pulmonary vasoconstrictor effect of norepinephrine. During hypoxic pulmonary vasoconstriction, the administration of either norepinephrine or isoproterenol lowered the pulmonary vascular resistance both before and after α-blockade. While this may be a true vasodepressor effect of these drugs it may also reflect passive changes in the pulmonary vessels secondary to an increased pulmonary blood flow.

The pulmonary vascular response to hypoxia in the reserpinized calves (Group B) was tested under three circumstances: (1) in the awake animal, (2) in the anesthetized animal prepared in the same way as those in Group A, and (3) during constant flow perfusion of the left lower lobe pulmonary artery. From these studies it was concluded that tissue catecholamine depletion did not diminish the pulmonary vascular response to hypoxia.

Thus, neither α-adrenergic blockade nor tissue catecholamine depletion prevents the hypoxic pulmonary pressor response. Furthermore, α-blockade prevents the pulmonary vasoconstrictor response to norepinephrine but not to hypoxia. Therefore it is concluded that hypoxic pulmonary vasoconstriction is not mediated through adrenergic receptor stimulation or release of endogenous catecholamines.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 274
page 274
icon of scanned page 275
page 275
icon of scanned page 276
page 276
icon of scanned page 277
page 277
icon of scanned page 278
page 278
icon of scanned page 279
page 279
icon of scanned page 280
page 280
icon of scanned page 281
page 281
icon of scanned page 282
page 282
icon of scanned page 283
page 283
icon of scanned page 284
page 284
icon of scanned page 285
page 285
Version history
  • Version 1 (February 1, 1968): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts