Hox genes are well-known transcriptional regulators that play an essential role in directing embryonic development. Mice that are homozygous for a targeted disruption of the Hoxa10 gene exhibit uterine factor infertility. We have recently demonstrated that HOXA10 is expressed in the adult human uterus. To examine expression of HOXA10 during the menstrual cycle, Northern blot analysis and in situ hybridization were performed. Expression of HOXA10 dramatically increased during the midsecretory phase of the menstrual cycle, corresponding to the time of implantation and increase in circulating progesterone. Expression of HOXA10 in cultured endometrial cells was stimulated by estrogen or progesterone. Stimulation of HOXA10 by progesterone was concentration-dependent within the physiologic range, and the effect of estrogen was inhibited by cycloheximide. These results identify sex steroids as novel regulators of HOX gene expression. HOXA10 may have an important function in regulating endometrial development during the menstrual cycle and in establishing conditions necessary for implantation in the human.
HS Taylor, A Arici, D Olive, P Igarashi
Usage data is cumulative from July 2024 through July 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 492 | 0 |
100 | 0 | |
Citation downloads | 86 | 0 |
Totals | 678 | 0 |
Total Views | 678 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.