Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI105514

A Receptor Mechanism for the Inhibition Of Insulin Release by Epinephrine in Man

Daniel Porte Jr.

University of Washington and Veterans Administration Hospital, Department of Medicine, Seattle, Wash.

†

Clinical Investigator, Veterans Administration Hospital, Seattle, Wash.

Address requests for reprints to Dr. Daniel Porte, Jr., Veterans Administration Hospital, 4435 Beacon Ave. S., Seattle, Wash. 98108.

*

Submitted for publication June 9, 1966; accepted September 22, 1966.

Supported in part by grants AM-02456, T1-AM-5020, and AM-06670 from the National Institute of Arthritis and Metabolic Diseases. A portion of the study was conducted at the Clinical Research Center facility of the University of Washington (grant FR-37 from the National Institutes of Health).

Presented in part before a joint meeting of the American Society for Clinical Investigation and the American Federation for Clinical Research, May 1, 1966, Atlantic City, N. J.

Find articles by Porte, D. in: PubMed | Google Scholar

Published January 1, 1967 - More info

Published in Volume 46, Issue 1 on January 1, 1967
J Clin Invest. 1967;46(1):86–94. https://doi.org/10.1172/JCI105514.
© 1967 The American Society for Clinical Investigation
Published January 1, 1967 - Version history
View PDF
Abstract

Normal adult men and women have been infused with epinephrine, 6 μg per minute, during lipolytic blockade with nicotinic acid, beta-adrenergic blockade with propranolol and Butoxamine, and alpha-adrenergic blockade with phentolamine. Epinephrine infusion was associated with low serum levels of immunoreactive insulin (IRI) except when phentolamine was given simultaneously. These findings are compatible with an alpha receptor mechanism for the epinephrine inhibition of insulin release. Phentolamine had no blocking effects on the tachycardia and widened pulse pressure or lipolytic stimulation by epinephrine, whereas both propranolol and Butoxamine blocked lipolysis, tachycardia, and widened pulse pressure. These findings are consistent with an alpha receptor blocking action for phentolamine and beta receptor blocking action for propranolol and Butoxamine. Inhibition of lipolysis by nicotinic acid did not alter IRI or glucose responses to epinephrine. It is concluded that the lipolytic effect of epinephrine is unrelated to its effects on IRI release. Lipolytic blockade by nicotinic acid also did not change IRI or glucose in fasting subjects or their responses to a glucose infusion, 300 mg per minute. These observations appear to conflict with the Randle hypothesis (the glucose-fatty acid cycle) and raise some doubt as to whether plasma FFA concentrations are direct determinants of glucose or IRI concentrations in normal man.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 86
page 86
icon of scanned page 87
page 87
icon of scanned page 88
page 88
icon of scanned page 89
page 89
icon of scanned page 90
page 90
icon of scanned page 91
page 91
icon of scanned page 92
page 92
icon of scanned page 93
page 93
icon of scanned page 94
page 94
Version history
  • Version 1 (January 1, 1967): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts