The relation between the active potassium influx in the human red blood cell and the extracellular potassium concentration does not appear to be consistent with the Michaelis-Menten model, but is adequately described by a model in which two potassium ions are required simultaneously at some site or sites in the transport mechanism before transport occurs. The same type of relation appears to exist between that portion of the sodium outflux that requires the presence of extracellular potassium and the extracellular potassium concentration. Rubidium, cesium, and lithium, which are apparently transported by the same system that transports potassium, stimulate the potassium influx when both potassium and the second ion are present at low concentrations, as is predicted by the two-site model.
John R. Sachs, Louis G. Welt
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 145 | 4 |
54 | 17 | |
Scanned page | 504 | 3 |
Citation downloads | 51 | 0 |
Totals | 754 | 24 |
Total Views | 778 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.