Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-kappaB downregulation in transcriptional repression of the p40 gene.
D D'Ambrosio, … , F Sinigaglia, P Panina-Bordignon
D D'Ambrosio, … , F Sinigaglia, P Panina-Bordignon
Published January 1, 1998
Citation Information: J Clin Invest. 1998;101(1):252-262. https://doi.org/10.1172/JCI1050.
View: Text | PDF
Research Article

Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-kappaB downregulation in transcriptional repression of the p40 gene.

  • Text
  • PDF
Abstract

Interleukin 12 (IL-12), produced by myelomonocytic cells, plays a pivotal role in the development of T helper 1 (Th1) cells, which are involved in the pathogenesis of chronic inflammatory autoimmune disorders. 1,25-Dihydroxyvitamin D3 [1,25(OH)2D3] inhibits IL-12 production by activated macrophages and dendritic cells, thus providing a novel interpretation to its immunosuppressive properties. 1,25(OH)2D3 significantly inhibits mRNA expression for both IL-12 p35 and p40 subunits acting at the transcriptional level. The effect of 1,25(OH)2D3 on p40 promoter activation was analyzed by cotransfecting monocytic RAW264.7 cells with p40 promoter/reporter constructs and expression vectors for vitamin D3 receptor (VDR) and/or retinoid X receptor (RXRalpha). We observed transcriptional repression of the p40 gene by 1,25(OH)2D3, which required coexpression of VDR with RXR and an intact VDR DNA-binding domain. The repressive effect maps to a region in the p40 promoter containing a binding site for NF-kappaB (p40-kappaB). Deletion of the p40-kappaB site abrogates part of the inhibitory effect on the p40 promoter, confirming the functional relevance of this site. Activation of monocytic THP-1 cells in the presence of 1,25(OH)2D3 results in reduced binding to the p40-kappaB site. Thus, 1,25(OH)2D3 may negatively regulate IL-12 production by downregulation of NF-kappaB activation and binding to the p40-kappaB sequence.

Authors

D D'Ambrosio, M Cippitelli, M G Cocciolo, D Mazzeo, P Di Lucia, R Lang, F Sinigaglia, P Panina-Bordignon

×

Usage data is cumulative from June 2021 through June 2022.

Usage JCI PMC
Text version 626 521
PDF 80 63
Citation downloads 45 0
Totals 751 584
Total Views 1,335
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts