Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Dynamin is involved in human epithelial cell vacuolation caused by the Helicobacter pylori–produced cytotoxin VacA
Junko Suzuki, Hirohide Ohnsihi, Hiroshi Shibata, Akihiro Wada, Toshiya Hirayama, Taroh Iiri, Namiki Ueda, Chiho Kanamaru, Tomohiro Tsuchida, Hirosato Mashima, Hiroshi Yasuda, Toshiro Fujita
Junko Suzuki, Hirohide Ohnsihi, Hiroshi Shibata, Akihiro Wada, Toshiya Hirayama, Taroh Iiri, Namiki Ueda, Chiho Kanamaru, Tomohiro Tsuchida, Hirosato Mashima, Hiroshi Yasuda, Toshiro Fujita
View: Text | PDF | Corrigendum
Article

Dynamin is involved in human epithelial cell vacuolation caused by the Helicobacter pylori–produced cytotoxin VacA

  • Text
  • PDF
Abstract

The Helicobacter pylori–produced cytotoxin VacA induces intracellular vacuolation. To elucidate the molecular mechanism of vacuole formation by VacA, we examined the participation of dynamin, a GTPase functioning in intracellular vesicle formation, in human HeLa cells. Immunocytochemistry revealed that endogenous dynamin was localized to vacuoles induced by VacA. In cells transiently transfected with a GTPase-defective (dominant-negative) dynamin mutant, VacA failed to induce vacuolation. In contrast, VacA did induce vacuolation in cells transiently transfected with wild-type dynamin. Furthermore, under VacA treatment, neutral red dye uptake, a parameter of VacA-induced vacuolation, was inhibited in cells stably transfected with the dominant-negative dynamin mutant. In contrast, uptake was markedly enhanced in cells stably transfected with wild-type dynamin. Moreover, VacA cytopathic effects on the viability of HeLa cells were inhibited in cells stably transfected with dominant-negative dynamin-1. Sequential immunocytochemical observation confirmed that expression of dominant-negative dynamin did not affect VacA attachment to or internalization into HeLa cells. We suggest that dynamin is involved in the intracellular vacuolation induced by VacA.

Authors

Junko Suzuki, Hirohide Ohnsihi, Hiroshi Shibata, Akihiro Wada, Toshiya Hirayama, Taroh Iiri, Namiki Ueda, Chiho Kanamaru, Tomohiro Tsuchida, Hirosato Mashima, Hiroshi Yasuda, Toshiro Fujita

×

Figure 5

Options: View larger image (or click on image) Download as PowerPoint
VacA internalization by HeLa cells is not affected by dominant-negative ...
VacA internalization by HeLa cells is not affected by dominant-negative dynamin-1. HeLa cells transiently transfected with dominant-negative dynamin-1 were double-stained with anti–dynamin-1 antibody (upper panels) and anti-VacA antibody (lower panels) 1, 3, and 12 hours after VacA intoxication. VacA attached to (1 hour) and internalized into (3 hours and 12 hours) dominant-negative dynamin-1–transfected cells (arrowheads) as well as nontransfected cells. Bar, 10 μm. ×400.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts