Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Osteocyte and osteoblast apoptosis and excessive bone deposition accompany failure of collagenase cleavage of collagen
Weiguang Zhao, … , Yingmin Wang, Stephen M. Krane
Weiguang Zhao, … , Yingmin Wang, Stephen M. Krane
Published October 15, 2000
Citation Information: J Clin Invest. 2000;106(8):941-949. https://doi.org/10.1172/JCI10158.
View: Text | PDF
Article

Osteocyte and osteoblast apoptosis and excessive bone deposition accompany failure of collagenase cleavage of collagen

  • Text
  • PDF
Abstract

Mice carrying a targeted mutation (r) in Col1a1, encoding a collagenase-resistant form of type I collagen, have altered skeletal remodeling. In hematoxylin and eosin–stained paraffin sections, we detect empty lacunae in osteocytes in calvariae from Col1a1r/r mice at age 2 weeks, increasing through age 10–12 months. Empty lacunae appear to result from osteocyte apoptosis, since staining of osteocytes/periosteal osteoblasts with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling is increased in Col1a1r/r relative to wild-type bones. Osteocyte perilacunar matrices stained with Ab that recognizes collagenase collagen α1(I) chain cleavage ends in wild-type but not Col1a1r/r calvariae. Increased calvarial periosteal and tibial/femoral endosteal bone deposition was found in Col1a1r/r mice from ages 3–12 months. Calcein labeling of calvarial surfaces was increased in Col1a1r/r relative to wild-type mice. Daily injections of synthetic parathyroid hormone for 30 days increased calcein-surface labeling in wild-type but caused no further increase in the already high calcein staining of Col1a1r/r bones. Thus, failure of collagenase cleavage of type I collagen in Col1a1r/r mice is associated with osteocyte/osteoblast death but increases bone deposition in a manner that mimics the parathyroid hormone–induced bone surface activation seen in wild-type mice.

Authors

Weiguang Zhao, Michael H. Byrne, Yingmin Wang, Stephen M. Krane

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 775 152
PDF 95 31
Figure 380 5
Citation downloads 73 0
Totals 1,323 188
Total Views 1,511
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts