Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Osteocyte and osteoblast apoptosis and excessive bone deposition accompany failure of collagenase cleavage of collagen
Weiguang Zhao, Michael H. Byrne, Yingmin Wang, Stephen M. Krane
Weiguang Zhao, Michael H. Byrne, Yingmin Wang, Stephen M. Krane
View: Text | PDF
Article

Osteocyte and osteoblast apoptosis and excessive bone deposition accompany failure of collagenase cleavage of collagen

  • Text
  • PDF
Abstract

Mice carrying a targeted mutation (r) in Col1a1, encoding a collagenase-resistant form of type I collagen, have altered skeletal remodeling. In hematoxylin and eosin–stained paraffin sections, we detect empty lacunae in osteocytes in calvariae from Col1a1r/r mice at age 2 weeks, increasing through age 10–12 months. Empty lacunae appear to result from osteocyte apoptosis, since staining of osteocytes/periosteal osteoblasts with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling is increased in Col1a1r/r relative to wild-type bones. Osteocyte perilacunar matrices stained with Ab that recognizes collagenase collagen α1(I) chain cleavage ends in wild-type but not Col1a1r/r calvariae. Increased calvarial periosteal and tibial/femoral endosteal bone deposition was found in Col1a1r/r mice from ages 3–12 months. Calcein labeling of calvarial surfaces was increased in Col1a1r/r relative to wild-type mice. Daily injections of synthetic parathyroid hormone for 30 days increased calcein-surface labeling in wild-type but caused no further increase in the already high calcein staining of Col1a1r/r bones. Thus, failure of collagenase cleavage of type I collagen in Col1a1r/r mice is associated with osteocyte/osteoblast death but increases bone deposition in a manner that mimics the parathyroid hormone–induced bone surface activation seen in wild-type mice.

Authors

Weiguang Zhao, Michael H. Byrne, Yingmin Wang, Stephen M. Krane

×

Figure 4

Options: View larger image (or click on image) Download as PowerPoint
The thickness of calvariae in Col1a1r/r mice increases with increasing a...
The thickness of calvariae in Col1a1r/r mice increases with increasing age. (a) Histological sections of calvariae from wild-type and Col1a1r/r mice at 4 weeks and 12 months of age, cut perpendicularly to the sagittal suture and stained with H&E. The outer periosteal surfaces of each section are at the top and the inner periosteal surfaces are at the bottom. The thickness of the calvariae was similar in 4-week-old wild-type and Col1a1r/r mice, but the thickness in 12-month-old Col1a1r/r mice was markedly increased, compared with wild-type mice. (b) Quantification of calvarial bone area in ten wild-type and ten Col1a1r/r mice (4 weeks old) and five wild-type and seven Col1a1r/r mice (10 months old).

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts