Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A novel role for vitamin K1 in a tyrosine phosphorylation cascade during chick embryogenesis.
S P Saxena, … , E D Israels, L G Israels
S P Saxena, … , E D Israels, L G Israels
Published February 15, 1997
Citation Information: J Clin Invest. 1997;99(4):602-607. https://doi.org/10.1172/JCI119202.
View: Text | PDF
Research Article

A novel role for vitamin K1 in a tyrosine phosphorylation cascade during chick embryogenesis.

  • Text
  • PDF
Abstract

The development of the embryo is dependent upon a highly coordinated repertoire of cell division, differentiation, and migration. Protein-tyrosine phosphorylation plays a pivotal role in the regulation of these processes. Vitamin K-dependent gamma-carboxylated proteins have been identified as ligands for a unique family (Tyro 3 and 7) of receptor tyrosine kinases (RTKs) with transforming ability. The involvement of vitamin K metabolism and function in two well characterized birth defects, warfarin embryopathy and vitamin K epoxide reductase deficiency, suggests that developmental signals from K-dependent pathways may be required for normal embryogenesis. Using a chick embryogenesis model, we now demonstrate the existence of a vitamin K1-dependent protein-tyrosine phosphorylation cascade involving c-Eyk, a member of the Tyro 12 family, and key intracellular proteins, including focal adhesion kinase (pp125FAK), paxillin, and pp60src. This cascade is sensitive to alteration in levels or metabolism of vitamin K1. These findings provide a major clue as to why, in the mammalian (and human) fetus, the K-dependent proteins are maintained in an undercarboxylated state, even to the point of placing the newborn at hemorrhagic risk. The precise regulation of vitamin K1-dependent regulatory pathways would appear to be critical for orderly embryogenesis.

Authors

S P Saxena, T Fan, M Li, E D Israels, L G Israels

×

Full Text PDF

Download PDF (345.97 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts