Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Reversal of established autoimmune diabetes by restoration of endogenous β cell function
Shinichiro Ryu, … , David A. Schoenfeld, Denise L. Faustman
Shinichiro Ryu, … , David A. Schoenfeld, Denise L. Faustman
Published July 1, 2001
Citation Information: J Clin Invest. 2001;108(1):63-72. https://doi.org/10.1172/JCI12335.
View: Text | PDF
Article

Reversal of established autoimmune diabetes by restoration of endogenous β cell function

  • Text
  • PDF
Abstract

In NOD (nonobese diabetic) mice, a model of autoimmune diabetes, various immunomodulatory interventions prevent progression to diabetes. However, after hyperglycemia is established, such interventions rarely alter the course of disease or allow sustained engraftment of islet transplants. A proteasome defect in lymphoid cells of NOD mice impairs the presentation of self antigens and increases the susceptibility of these cells to TNF-α–induced apoptosis. Here, we examine the hypothesis that induction of TNF-α expression combined with reeducation of newly emerging T cells with self antigens can interrupt autoimmunity. Hyperglycemic NOD mice were treated with CFA to induce TNF-α expression and were exposed to functional complexes of MHC class I molecules and antigenic peptides either by repeated injection of MHC class I matched splenocytes or by transplantation of islets from nonautoimmune donors. Hyperglycemia was controlled in animals injected with splenocytes by administration of insulin or, more effectively, by implantation of encapsulated islets. These interventions reversed the established β cell–directed autoimmunity and restored endogenous pancreatic islet function to such an extent that normoglycemia was maintained in up to 75% of animals after discontinuation of treatment and removal of islet transplants. A therapy aimed at the selective elimination of autoreactive cells and the reeducation of T cells, when combined with control of glycemia, is thus able to effect an apparent cure of established type 1 diabetes in the NOD mouse.J. Clin. Invest.108:63–72 (2001). DOI:10.1172/JCI200112335.

Authors

Shinichiro Ryu, Shohta Kodama, Kazuko Ryu, David A. Schoenfeld, Denise L. Faustman

×

Full Text PDF

Download PDF (3.55 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts