Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

  • 1,935 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 143
  • 144
  • 145
  • …
  • 193
  • 194
  • Next →
Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms
Robert Pyo, … , Robert M. Senior, Robert W. Thompson
Robert Pyo, … , Robert M. Senior, Robert W. Thompson
Published June 1, 2000
Citation Information: J Clin Invest. 2000;105(11):1641-1649. https://doi.org/10.1172/JCI8931.
View: Text | PDF

Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms

  • Text
  • PDF
Abstract

Abdominal aortic aneurysms represent a life-threatening condition characterized by chronic inflammation, destructive remodeling of the extracellular matrix, and increased local expression of matrix metalloproteinases (MMPs). Both 92-kD gelatinase (MMP-9) and macrophage elastase (MMP-12) have been implicated in this disease, but it is not known if either is necessary in aneurysmal degeneration. We show here that transient elastase perfusion of the mouse aorta results in delayed aneurysm development that is temporally associated with transmural mononuclear inflammation, increased local production of several elastolytic MMPs, and progressive destruction of the elastic lamellae. Elastase-induced aneurysmal degeneration was suppressed by treatment with a nonselective MMP inhibitor (doxycycline) and by targeted gene disruption of MMP-9, but not by isolated deficiency of MMP-12. Bone marrow transplantation from wild-type mice prevented the aneurysm-resistant phenotype in MMP-9–deficient animals, and wild-type mice acquired aneurysm resistance after transplantation from MMP-9–deficient donors. These results demonstrate that inflammatory cell expression of MMP-9 plays a critical role in an experimental model of aortic aneurysm disease, suggesting that therapeutic strategies targeting MMP-9 may limit the growth of small abdominal aortic aneurysms.

Authors

Robert Pyo, Jason K. Lee, J. Michael Shipley, John A. Curci, Dongli Mao, Scott J. Ziporin, Terri L. Ennis, Steven D. Shapiro, Robert M. Senior, Robert W. Thompson

×

Na+-dependent transporters mediate HCO3– salvage across the luminal membrane of the main pancreatic duct
Min Goo Lee, … , Kyung Hwan Kim, Shmuel Muallem
Min Goo Lee, … , Kyung Hwan Kim, Shmuel Muallem
Published June 1, 2000
Citation Information: J Clin Invest. 2000;105(11):1651-1658. https://doi.org/10.1172/JCI9207.
View: Text | PDF

Na+-dependent transporters mediate HCO3– salvage across the luminal membrane of the main pancreatic duct

  • Text
  • PDF
Abstract

To study the roles of Na+-dependent H+ transporters, we characterized H+ efflux mechanisms in the pancreatic duct in wild-type, NHE2–/–, and NHE3–/– mice. The pancreatic duct expresses NHE1 in the basolateral membrane, and NHE2 and NHE3 in the luminal membrane, but does not contain NHE4 or NHE5. Basolateral Na+-dependent H+ efflux in the microperfused duct was inhibited by 1.5 μM of the amiloride analogue HOE 694, consistent with expression of NHE1, whereas the luminal activity required 50 μM HOE 694 for effective inhibition, suggesting that the efflux might be mediated by NHE2. However, disruption of NHE2 had no effect on luminal transport, while disruption of the NHE3 gene reduced luminal Na+-dependent H+ efflux by ∼45%. Notably, the remaining luminal Na+-dependent H+ efflux in ducts from NHE3–/– mice was inhibited by 50 μM HOE 694. Hence, ∼55% of luminal H+ efflux (or HCO3– influx) in the pancreatic duct is mediated by a novel, HOE 694–sensitive, Na+-dependent mechanism. H+ transport by NHE3 and the novel transporter is inhibited by cAMP, albeit to different extents. We propose that multiple Na+-dependent mechanisms in the luminal membrane of the pancreatic duct absorb Na+ and HCO3– to produce a pancreatic juice that is poor in HCO3– and rich in Cl– during basal secretion. Inhibition of the transporters during stimulated secretion aids in producing the HCO3–-rich pancreatic juice.

Authors

Min Goo Lee, Wooin Ahn, Joo Young Choi, Xiang Luo, Jeong Taeg Seo, Patrick J. Schultheis, Gary E. Shull, Kyung Hwan Kim, Shmuel Muallem

×

ADAMTS-1: a metalloproteinase-disintegrin essential for normal growth, fertility, and organ morphology and function
Takayuki Shindo, … , Yoshio Yazaki, Kouji Matsushima
Takayuki Shindo, … , Yoshio Yazaki, Kouji Matsushima
Published May 15, 2000
Citation Information: J Clin Invest. 2000;105(10):1345-1352. https://doi.org/10.1172/JCI8635.
View: Text | PDF

ADAMTS-1: a metalloproteinase-disintegrin essential for normal growth, fertility, and organ morphology and function

  • Text
  • PDF
Abstract

A disintegrin and metalloproteinase (ADAM) represents a protein family possessing both metalloproteinase and disintegrin domains. ADAMTS-1, an ADAM family member cloned from cachexigenic colon adenocarcinoma, is unusual in that it contains thrombospondin type I motifs and anchors to the extracellular matrix. To elucidate the biological role of ADAMTS-1, we developed ADAMTS-1–null mice by gene targeting. Targeted disruption of the mouse ADAMTS-1 gene resulted in growth retardation with adipose tissue malformation. Impaired female fertilization accompanied by histological changes in the uterus and ovaries also resulted. Furthermore, ADAMTS-1–/– mice demonstrated enlarged renal calices with fibrotic changes from the ureteropelvic junction through the ureter, and abnormal adrenal medullary architecture without capillary formation. ADAMTS-1 thus appears necessary for normal growth, fertility, and organ morphology and function. Moreover, the resemblance of the renal phenotype to human ureteropelvic junction obstruction may provide a clue to the pathogenesis of this common congenital disease.

Authors

Takayuki Shindo, Hiroki Kurihara, Kouji Kuno, Hitoshi Yokoyama, Takashi Wada, Yukiko Kurihara, Tomihiko Imai, Yuhui Wang, Masafumi Ogata, Hiroaki Nishimatsu, Nobuo Moriyama, Yoshio Oh-hashi, Hiroyuki Morita, Takatoshi Ishikawa, Ryozo Nagai, Yoshio Yazaki, Kouji Matsushima

×

Cubilin is an albumin binding protein important for renal tubular albumin reabsorption
Henrik Birn, … , Søren K. Moestrup, Erik I. Christensen
Henrik Birn, … , Søren K. Moestrup, Erik I. Christensen
Published May 15, 2000
Citation Information: J Clin Invest. 2000;105(10):1353-1361. https://doi.org/10.1172/JCI8862.
View: Text | PDF

Cubilin is an albumin binding protein important for renal tubular albumin reabsorption

  • Text
  • PDF
Abstract

Using affinity chromatography and surface plasmon resonance analysis, we have identified cubilin, a 460-kDa receptor heavily expressed in kidney proximal tubule epithelial cells, as an albumin binding protein. Dogs with a functional defect in cubilin excrete large amounts of albumin in combination with virtually abolished proximal tubule reabsorption, showing the critical role for cubilin in the uptake of albumin by the proximal tubule. Also, by immunoblotting and immunocytochemistry we show that previously identified low–molecular-weight renal albumin binding proteins are fragments of cubilin. In addition, we find that mice lacking the endocytic receptor megalin show altered urinary excretion, and reduced tubular reabsorption, of albumin. Because cubilin has been shown to colocalize and interact with megalin, we propose a mechanism of albumin reabsorption mediated by both of these proteins. This process may prove important for understanding interstitial renal inflammation and fibrosis caused by proximal tubule uptake of an increased load of filtered albumin.

Authors

Henrik Birn, John C. Fyfe, Christian Jacobsen, Francoise Mounier, Pierre J. Verroust, Hans Ørskov, Thomas E. Willnow, Søren K. Moestrup, Erik I. Christensen

×

Predominant role for C5b-9 in renal ischemia/reperfusion injury
Wuding Zhou, … , Gregory L. Stahl, Steven H. Sacks
Wuding Zhou, … , Gregory L. Stahl, Steven H. Sacks
Published May 15, 2000
Citation Information: J Clin Invest. 2000;105(10):1363-1371. https://doi.org/10.1172/JCI8621.
View: Text | PDF

Predominant role for C5b-9 in renal ischemia/reperfusion injury

  • Text
  • PDF
Abstract

Previous work has indicated that complement is a mediator of ischemia/reperfusion (I/R) injury. To investigate the components of complement responsible for this effect, we examined a model of renal I/R injury in C3-, C4-, C5-, and C6-deficient mice. We occluded the renal arteries and veins (40–58 minutes) and, after reperfusion (0–72 hours), assessed renal structural and functional injury. C3-, C5-, and C6-deficient mice were protected from renal I/R injury, whereas C4-deficient mice were not protected. C6-deficient mice treated with antibody to block C5a generation showed no additional protection from I/R injury. Reconstitution with C6 alone restored the I/R injury in C6-deficient mice. Tubular epithelial cells were the main structures damaged by complement-mediated attack, and, in contrast, the renal vessels were spared. Neutrophil infiltration and myeloperoxidase activity were reduced in C-deficient mouse kidney, but by a similar extent in C3-deficient and C6-deficient mice. We conclude that the membrane attack complex of complement (in which C5 and C6 participate) may account for the effect of complement on mouse renal I/R injury. Neither C5a-mediated neutrophil infiltration nor the classic pathway, in which C4 participates, appears to contribute to I/R injury in this model. By contrast with other organs, such as the heart, the primary effect of complement in the ischemic area is on the parenchymal cell rather than the vascular endothelial cell. The membrane attack complex of complement is a potential target for prevention of I/R injury in this model.

Authors

Wuding Zhou, Conrad A. Farrar, Katsushige Abe, Julian R. Pratt, James E. Marsh, Yi Wang, Gregory L. Stahl, Steven H. Sacks

×

Disruption of ECE-1 and ECE-2 reveals a role for endothelin-converting enzyme-2 in murine cardiac development
Hiromi Yanagisawa, … , David E. Clouthier, Masashi Yanagisawa
Hiromi Yanagisawa, … , David E. Clouthier, Masashi Yanagisawa
Published May 15, 2000
Citation Information: J Clin Invest. 2000;105(10):1373-1382. https://doi.org/10.1172/JCI7447.
View: Text | PDF

Disruption of ECE-1 and ECE-2 reveals a role for endothelin-converting enzyme-2 in murine cardiac development

  • Text
  • PDF
Abstract

Endothelin-converting enzyme-1 and -2 (ECE-1 and -2) are membrane-bound metalloproteases that can cleave biologically the inactive endothelin-1 (ET-1) precursor to form active ET-1 in vitro. We previously reported developmental defects in specific subsets of neural crest–derived tissues, including branchial arch–derived craniofacial structures, aortic arch arteries, and the cardiac outflow tract in ECE-1 knockout mice. To examine the role of ECE-2 in cardiovascular development, we have now generated a null mutation in ECE-2 by homologous recombination. ECE-2 null mice develop normally, are healthy into adulthood, are fertile in both sexes, and live a normal life span. However, when they are bred into an ECE-1–null background, defects in cardiac outflow structures become more severe than those in ECE-1 single knockout embryos. In addition, ECE-1–/–; ECE-2–/– double null embryos exhibited abnormal atrioventricular valve formation, a phenotype never seen in ECE-1 single knockout embryos. In the developing mouse heart, ECE-2 mRNA is expressed in the endocardial cushion mesenchyme from embyronic day (E) 12.5, in contrast to the endocardial expression of ECE-1. Levels of mature ET-1 and ET-2 in whole ECE-1–/–; ECE-2–/– embryos at E12.5 do not differ appreciably from those of ECE-1–/– embryos. The significant residual ET-1/ET-2 in the ECE-1–/–; ECE-2–/– embryos indicates that proteases distinct from ECE-1 and ECE-2 can carry out ET-1 activation in vivo.

Authors

Hiromi Yanagisawa, Robert E. Hammer, James A. Richardson, Noriaki Emoto, S. Clay Williams, Shin-ichi Takeda, David E. Clouthier, Masashi Yanagisawa

×

Macrophage inflammatory protein 3α transgene attracts dendritic cells to established murine tumors and suppresses tumor growth
Toshiaki Fushimi, … , Malcolm A.S. Moore, Ronald G. Crystal
Toshiaki Fushimi, … , Malcolm A.S. Moore, Ronald G. Crystal
Published May 15, 2000
Citation Information: J Clin Invest. 2000;105(10):1383-1393. https://doi.org/10.1172/JCI7548.
View: Text | PDF

Macrophage inflammatory protein 3α transgene attracts dendritic cells to established murine tumors and suppresses tumor growth

  • Text
  • PDF
Abstract

Dendritic cells (DCs) are powerful antigen-presenting cells that function as the principal activators of T cells. Since the human CC chemokine, macrophage inflammatory protein 3α (MIP-3α), is chemotactic for DCs in vitro, we hypothesized that adenovirus-mediated gene transfer of MIP-3α (ΑdMIP-3α) to tumors might induce local accumulation of DCs and inhibit growth of preexisting tumors. AdMIP-3α directed expression of mRNA and protein in vitro, and the supernatant of A549 cells infected with AdMIP-3α was chemotactic for DCs. In vivo, injection of AdMIP-3α into subcutaneous tumors resulted in local expression of the MIP-3α cDNA and in the local accumulation of DCs. In four syngeneic tumor models, growth of established tumors was significantly inhibited compared with untreated tumors or tumors injected with control vector, and in all but the poorly immunogenic LLC carcinoma model, this treatment increased survival advantage of the preexisting tumors. In all four tumor models, intratumoral injection of AdMIP-3α induced the local accumulation of CD8b.2+ cells and elicited tumor-specific cytotoxic T-lymphocyte activity, and adoptive transfer of splenocytes of animals receiving this treatment protected against a subsequent challenge with the identical tumor cells. In wild-type but not in CD8-deficient mice, AdMIP-3α inhibited the growth of tumors. Finally, AdMIP-3α also inhibited the growth of distant tumors. This strategy may be useful for enlisting the help of DCs to boost anti-tumor immunity against local and metastatic tumors without the necessity of ex vivo isolation and manipulation of DCs.

Authors

Toshiaki Fushimi, Akira Kojima, Malcolm A.S. Moore, Ronald G. Crystal

×

CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo
Robert Passier, … , Stephen R. Grant, Eric N. Olson
Robert Passier, … , Stephen R. Grant, Eric N. Olson
Published May 15, 2000
Citation Information: J Clin Invest. 2000;105(10):1395-1406. https://doi.org/10.1172/JCI8551.
View: Text | PDF

CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo

  • Text
  • PDF
Abstract

Hypertrophic growth is an adaptive response of the heart to diverse pathological stimuli and is characterized by cardiomyocyte enlargement, sarcomere assembly, and activation of a fetal program of cardiac gene expression. A variety of Ca2+-dependent signal transduction pathways have been implicated in cardiac hypertrophy, but whether these pathways are independent or interdependent and whether there is specificity among them are unclear. Previously, we showed that activation of the Ca2+/calmodulin-dependent protein phosphatase calcineurin or its target transcription factor NFAT3 was sufficient to evoke myocardial hypertrophy in vivo. Here, we show that activated Ca2+/calmodulin-dependent protein kinases-I and -IV (CaMKI and CaMKIV) also induce hypertrophic responses in cardiomyocytes in vitro and that CaMKIV overexpressing mice develop cardiac hypertrophy with increased left ventricular end-diastolic diameter and decreased fractional shortening. Crossing this transgenic line with mice expressing a constitutively activated form of NFAT3 revealed synergy between these signaling pathways. We further show that CaMKIV activates the transcription factor MEF2 through a posttranslational mechanism in the hypertrophic heart in vivo. Activated calcineurin is a less efficient activator of MEF2-dependent transcription, suggesting that the calcineurin/NFAT and CaMK/MEF2 pathways act in parallel. These findings identify MEF2 as a downstream target for CaMK signaling in the hypertrophic heart and suggest that the CaMK and calcineurin pathways preferentially target different transcription factors to induce cardiac hypertrophy.

Authors

Robert Passier, Hong Zeng, Norbert Frey, Francisco J. Naya, Rebekka L. Nicol, Timothy A. McKinsey, Paul Overbeek, James A. Richardson, Stephen R. Grant, Eric N. Olson

×

HIV-specific cytotoxic T lymphocytes traffic to lymph nodes and localize at sites of HIV replication and cell death
Scott J. Brodie, … , Stanley R. Riddell, Lawrence Corey
Scott J. Brodie, … , Stanley R. Riddell, Lawrence Corey
Published May 15, 2000
Citation Information: J Clin Invest. 2000;105(10):1407-1417. https://doi.org/10.1172/JCI8707.
View: Text | PDF | Expression of concern | Retraction

HIV-specific cytotoxic T lymphocytes traffic to lymph nodes and localize at sites of HIV replication and cell death

  • Text
  • PDF
Abstract

We have tracked the in vivo migration and have identified in vivo correlates of cytotoxic T-lymphocyte (CTL) activity in HIV-seropositive subjects infused with autologous gene-marked CD8+ HIV-specific CTL. The number of circulating gene-marked CTL ranged from 1.6 to 3.5% shortly after infusion to less than 0.5% 2 weeks later. Gene-marked CTL were present in the lymph node at 4.5- to 11-fold excess and colocalized within parafollicular regions of the lymph node adjacent to cells expressing HIV tat fusion transcripts, a correlate of virus replication. The CTL clones expressed the CCR5 receptor and localized among HIV-infected cells expressing the ligands MIP-1α and MIP-1β, CC-chemokines produced at sites of virus replication. Aggregates of apoptotic cells and cells expressing granzyme-B localized within these same sites. In contrast, lymph node sections from untreated HIV-seropositive subjects, all with significant viral burden (> 50,000 HIV RNA copies/mL plasma), showed no CC-chemokine expression and exhibited only sporadic and randomly distributed cells expressing granzymes and/or apoptotic cells. These studies show that the infused CTL specifically migrate to sites of HIV replication and retain their antigen-specific cytolytic potential. Moreover, these studies provide a methodology that will facilitate studies of both the magnitude and functional phenotype of Ag-specific CD8+ T cells in vivo.

Authors

Scott J. Brodie, Bruce K. Patterson, Deborah A. Lewinsohn, Kurt Diem, David Spach, Phillip D. Greenberg, Stanley R. Riddell, Lawrence Corey

×

Osmotic water permeabilities of cultured, well-differentiated normal and cystic fibrosis airway epithelia
Hirotoshi Matsui, … , Robert Tarran, Richard C. Boucher
Hirotoshi Matsui, … , Robert Tarran, Richard C. Boucher
Published May 15, 2000
Citation Information: J Clin Invest. 2000;105(10):1419-1427. https://doi.org/10.1172/JCI4546.
View: Text | PDF

Osmotic water permeabilities of cultured, well-differentiated normal and cystic fibrosis airway epithelia

  • Text
  • PDF
Abstract

Current hypotheses describing the function of normal airway surface liquid (ASL) in lung defense are divergent. One theory predicts that normal airways regulate ASL volume by modulating the flow of isosmotic fluid across the epithelium, whereas an alternative theory predicts that ASL is normally hyposmotic. These hypotheses predict different values for the osmotic water permeability (Pf) of airway epithelia. We measured Pf of cultures of normal and cystic fibrosis (CF) airway epithelia that, like the native tissue, contain columnar cells facing the lumen and basal cells that face a basement membrane. Xz laser scanning confocal microscopy recorded changes in epithelial height and transepithelial volume flow in response to anisosmotic challenges. With luminal hyperosmotic challenges, transepithelial and apical membrane Pf are relatively high for both normal and CF airway epithelia, consistent with an isosmotic ASL. Simultaneous measurements of epithelial cell volume and transepithelial water flow revealed that airway columnar epithelial cells behave as osmometers whose volume is controlled by luminal osmolality. Basal cell volume did not change in these experiments. When the serosal side of the epithelium was challenged with hyperosmotic solutions, the basal cells shrank, whereas the lumen-facing columnar cells did not. We conclude that (a) normal and CF airway epithelia have relatively high water permeabilities, consistent with the isosmotic ASL theory, and the capacity to restore water on airway surfaces lost by evaporation, and (b) the columnar cell basolateral membrane and tight junctions limit transepithelial water flow in this tissue.

Authors

Hirotoshi Matsui, C. William Davis, Robert Tarran, Richard C. Boucher

×
  • ← Previous
  • 1
  • 2
  • …
  • 143
  • 144
  • 145
  • …
  • 193
  • 194
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts