Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,558 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 424
  • 425
  • 426
  • …
  • 2555
  • 2556
  • Next →
Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice
Dipak Panigrahy, … , Mark W. Kieran, Darryl C. Zeldin
Dipak Panigrahy, … , Mark W. Kieran, Darryl C. Zeldin
Published December 19, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI58128.
View: Text | PDF

Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice

  • Text
  • PDF
Abstract

Epoxyeicosatrienoic acids (EETs) are small molecules produced by cytochrome P450 epoxygenases. They are lipid mediators that act as autocrine or paracrine factors to regulate inflammation and vascular tone. As a result, drugs that raise EET levels are in clinical trials for the treatment of hypertension and many other diseases. However, despite their pleiotropic effects on cells, little is known about the role of these epoxyeicosanoids in cancer. Here, using genetic and pharmacological manipulation of endogenous EET levels, we demonstrate that EETs are critical for primary tumor growth and metastasis in a variety of mouse models of cancer. Remarkably, we found that EETs stimulated extensive multiorgan metastasis and escape from tumor dormancy in several tumor models. This systemic metastasis was not caused by excessive primary tumor growth but depended on endothelium-derived EETs at the site of metastasis. Administration of synthetic EETs recapitulated these results, while EET antagonists suppressed tumor growth and metastasis, demonstrating in vivo that pharmacological modulation of EETs can affect cancer growth. Furthermore, inhibitors of soluble epoxide hydrolase (sEH), the enzyme that metabolizes EETs, elevated endogenous EET levels and promoted primary tumor growth and metastasis. Thus, our data indicate a central role for EETs in tumorigenesis, offering a mechanistic link between lipid signaling and cancer and emphasizing the critical importance of considering possible effects of EET-modulating drugs on cancer.

Authors

Dipak Panigrahy, Matthew L. Edin, Craig R. Lee, Sui Huang, Diane R. Bielenberg, Catherine E. Butterfield, Carmen M. Barnés, Akiko Mammoto, Tadanori Mammoto, Ayala Luria, Ofra Benny, Deviney M. Chaponis, Andrew C. Dudley, Emily R. Greene, Jo-Anne Vergilio, Giorgio Pietramaggiori, Sandra S. Scherer-Pietramaggiori, Sarah M. Short, Meetu Seth, Fred B. Lih, Kenneth B. Tomer, Jun Yang, Reto A. Schwendener, Bruce D. Hammock, John R. Falck, Vijaya L. Manthati, Donald E. Ingber, Arja Kaipainen, Patricia A. D’Amore, Mark W. Kieran, Darryl C. Zeldin

×

Pancreatic GLP-1 receptor activation is sufficient for incretin control of glucose metabolism in mice
Benjamin J. Lamont, … , Herbert Gaisano, Daniel J. Drucker
Benjamin J. Lamont, … , Herbert Gaisano, Daniel J. Drucker
Published December 19, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI42497.
View: Text | PDF

Pancreatic GLP-1 receptor activation is sufficient for incretin control of glucose metabolism in mice

  • Text
  • PDF
Abstract

Glucagon-like peptide-1 (GLP-1) circulates at low levels and acts as an incretin hormone, potentiating glucose-dependent insulin secretion from islet β cells. GLP-1 also modulates gastric emptying and engages neural circuits in the portal region and CNS that contribute to GLP-1 receptor–dependent (GLP-1R–dependent) regulation of glucose homeostasis. To elucidate the importance of pancreatic GLP-1R signaling for glucose homeostasis, we generated transgenic mice that expressed the human GLP-1R in islets and pancreatic ductal cells (Pdx1-hGLP1R:Glp1r–/– mice). Transgene expression restored GLP-1R–dependent stimulation of cAMP and Akt phosphorylation in isolated islets, conferred GLP-1R–dependent stimulation of β cell proliferation, and was sufficient for restoration of GLP-1–stimulated insulin secretion in perifused islets. Systemic GLP-1R activation with the GLP-1R agonist exendin-4 had no effect on food intake, hindbrain c-fos expression, or gastric emptying but improved glucose tolerance and stimulated insulin secretion in Pdx1-hGLP1R:Glp1r–/– mice. i.c.v. GLP-1R blockade with the antagonist exendin(9–39) impaired glucose tolerance in WT mice but had no effect in Pdx1-hGLP1R:Glp1r–/– mice. Nevertheless, transgenic expression of the pancreatic GLP-1R was sufficient to normalize both oral and i.p. glucose tolerance in Glp1r–/– mice. These findings illustrate that low levels of endogenous GLP-1 secreted from gut endocrine cells are capable of augmenting glucoregulatory activity via pancreatic GLP-1Rs independent of communication with neural pathways.

Authors

Benjamin J. Lamont, Yazhou Li, Edwin Kwan, Theodore J. Brown, Herbert Gaisano, Daniel J. Drucker

×

Heparan sulfate and heparanase play key roles in mouse β cell survival and autoimmune diabetes
Andrew F. Ziolkowski, … , Christopher R. Parish, Charmaine J. Simeonovic
Andrew F. Ziolkowski, … , Christopher R. Parish, Charmaine J. Simeonovic
Published December 19, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI46177.
View: Text | PDF

Heparan sulfate and heparanase play key roles in mouse β cell survival and autoimmune diabetes

  • Text
  • PDF
Abstract

The autoimmune type 1 diabetes (T1D) that arises spontaneously in NOD mice is considered to be a model of T1D in humans. It is characterized by the invasion of pancreatic islets by mononuclear cells (MNCs), which ultimately leads to destruction of insulin-producing β cells. Although T cell dependent, the molecular mechanisms triggering β cell death have not been fully elucidated. Here, we report that a glycosaminoglycan, heparan sulfate (HS), is expressed at extraordinarily high levels within mouse islets and is essential for β cell survival. In vitro, β cells rapidly lost their HS and died. β Cell death was prevented by HS replacement, a treatment that also rendered the β cells resistant to damage from ROS. In vivo, autoimmune destruction of islets in NOD mice was associated with production of catalytically active heparanase, an HS-degrading enzyme, by islet-infiltrating MNCs and loss of islet HS. Furthermore, in vivo treatment with the heparanase inhibitor PI-88 preserved intraislet HS and protected NOD mice from T1D. Our results identified HS as a critical molecular requirement for islet β cell survival and HS degradation as a mechanism for β cell destruction. Our findings suggest that preservation of islet HS could be a therapeutic strategy for preventing T1D.

Authors

Andrew F. Ziolkowski, Sarah K. Popp, Craig Freeman, Christopher R. Parish, Charmaine J. Simeonovic

×

Correlation of rare coding variants in the gene encoding human glucokinase regulatory protein with phenotypic, cellular, and kinetic outcomes
Matthew G. Rees, … , Anna L. Gloyn, Francis S. Collins
Matthew G. Rees, … , Anna L. Gloyn, Francis S. Collins
Published December 19, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI46425.
View: Text | PDF

Correlation of rare coding variants in the gene encoding human glucokinase regulatory protein with phenotypic, cellular, and kinetic outcomes

  • Text
  • PDF
Abstract

Defining the genetic contribution of rare variants to common diseases is a major basic and clinical science challenge that could offer new insights into disease etiology and provide potential for directed gene- and pathway-based prevention and treatment. Common and rare nonsynonymous variants in the GCKR gene are associated with alterations in metabolic traits, most notably serum triglyceride levels. GCKR encodes glucokinase regulatory protein (GKRP), a predominantly nuclear protein that inhibits hepatic glucokinase (GCK) and plays a critical role in glucose homeostasis. The mode of action of rare GCKR variants remains unexplored. We identified 19 nonsynonymous GCKR variants among 800 individuals from the ClinSeq medical sequencing project. Excluding the previously described common missense variant p.Pro446Leu, all variants were rare in the cohort. Accordingly, we functionally characterized all variants to evaluate their potential phenotypic effects. Defects were observed for the majority of the rare variants after assessment of cellular localization, ability to interact with GCK, and kinetic activity of the encoded proteins. Comparing the individuals with functional rare variants to those without such variants showed associations with lipid phenotypes. Our findings suggest that, while nonsynonymous GCKR variants, excluding p.Pro446Leu, are rare in individuals of mixed European descent, the majority do affect protein function. In sum, this study utilizes computational, cell biological, and biochemical methods to present a model for interpreting the clinical significance of rare genetic variants in common disease.

Authors

Matthew G. Rees, David Ng, Sarah Ruppert, Clesson Turner, Nicola L. Beer, Amy J. Swift, Mario A. Morken, Jennifer E. Below, Ilana Blech, James C. Mullikin, Mark I. McCarthy, Leslie G. Biesecker, Anna L. Gloyn, Francis S. Collins

×

Angiotensin receptor blockade attenuates cigarette smoke–induced lung injury and rescues lung architecture in mice
Megan Podowski, … , Robert Wise, Enid Neptune
Megan Podowski, … , Robert Wise, Enid Neptune
Published December 19, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI46215.
View: Text | PDF

Angiotensin receptor blockade attenuates cigarette smoke–induced lung injury and rescues lung architecture in mice

  • Text
  • PDF
Abstract

Chronic obstructive pulmonary disease (COPD) is a prevalent smoking-related disease for which no disease-altering therapies currently exist. As dysregulated TGF-β signaling associates with lung pathology in patients with COPD and in animal models of lung injury induced by chronic exposure to cigarette smoke (CS), we postulated that inhibiting TGF-β signaling would protect against CS-induced lung injury. We first confirmed that TGF-β signaling was induced in the lungs of mice chronically exposed to CS as well as in COPD patient samples. Importantly, key pathological features of smoking-associated lung disease in patients, e.g., alveolar injury with overt emphysema and airway epithelial hyperplasia with fibrosis, accompanied CS-induced alveolar cell apoptosis caused by enhanced TGF-β signaling in CS-exposed mice. Systemic administration of a TGF-β–specific neutralizing antibody normalized TGF-β signaling and alveolar cell death, conferring improved lung architecture and lung mechanics in CS-exposed mice. Use of losartan, an angiotensin receptor type 1 blocker used widely in the clinic and known to antagonize TGF-β signaling, also improved oxidative stress, inflammation, metalloprotease activation and elastin remodeling. These data support our hypothesis that inhibition of TGF-β signaling through angiotensin receptor blockade can attenuate CS-induced lung injury in an established murine model. More importantly, our findings provide a preclinical platform for the development of other TGF-β–targeted therapies for patients with COPD.

Authors

Megan Podowski, Carla Calvi, Shana Metzger, Kaori Misono, Hataya Poonyagariyagorn, Armando Lopez-Mercado, Therese Ku, Thomas Lauer, Sharon McGrath-Morrow, Alan Berger, Christopher Cheadle, Rubin Tuder, Harry C. Dietz, Wayne Mitzner, Robert Wise, Enid Neptune

×

Alkylpurine–DNA–N-glycosylase confers resistance to temozolomide in xenograft models of glioblastoma multiforme and is associated with poor survival in patients
Sameer Agnihotri, … , Monika Hegi, Abhijit Guha
Sameer Agnihotri, … , Monika Hegi, Abhijit Guha
Published December 12, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI59334.
View: Text | PDF | Erratum

Alkylpurine–DNA–N-glycosylase confers resistance to temozolomide in xenograft models of glioblastoma multiforme and is associated with poor survival in patients

  • Text
  • PDF
Abstract

Glioblastoma multiforme (GBM) is the most common and lethal of all gliomas. The current standard of care includes surgery followed by concomitant radiation and chemotherapy with the DNA alkylating agent temozolomide (TMZ). O6-methylguanine–DNA methyltransferase (MGMT) repairs the most cytotoxic of lesions generated by TMZ, O6-methylguanine. Methylation of the MGMT promoter in GBM correlates with increased therapeutic sensitivity to alkylating agent therapy. However, several aspects of TMZ sensitivity are not explained by MGMT promoter methylation. Here, we investigated our hypothesis that the base excision repair enzyme alkylpurine–DNA–N-glycosylase (APNG), which repairs the cytotoxic lesions N3-methyladenine and N7-methylguanine, may contribute to TMZ resistance. Silencing of APNG in established and primary TMZ-resistant GBM cell lines endogenously expressing MGMT and APNG attenuated repair of TMZ-induced DNA damage and enhanced apoptosis. Reintroducing expression of APNG in TMZ-sensitive GBM lines conferred resistance to TMZ in vitro and in orthotopic xenograft mouse models. In addition, resistance was enhanced with coexpression of MGMT. Evaluation of APNG protein levels in several clinical datasets demonstrated that in patients, high nuclear APNG expression correlated with poorer overall survival compared with patients lacking APNG expression. Loss of APNG expression in a subset of patients was also associated with increased APNG promoter methylation. Collectively, our data demonstrate that APNG contributes to TMZ resistance in GBM and may be useful in the diagnosis and treatment of the disease.

Authors

Sameer Agnihotri, Aaron S. Gajadhar, Christian Ternamian, Thierry Gorlia, Kristin L. Diefes, Paul S. Mischel, Joanna Kelly, Gail McGown, Mary Thorncroft, Brett L. Carlson, Jann N. Sarkaria, Geoffrey P. Margison, Kenneth Aldape, Cynthia Hawkins, Monika Hegi, Abhijit Guha

×

Intra-graft expression of genes involved in iron homeostasis predicts the development of operational tolerance in human liver transplantation
Felix Bohne, … , Giuseppe Tisone, Alberto Sánchez-Fueyo
Felix Bohne, … , Giuseppe Tisone, Alberto Sánchez-Fueyo
Published December 12, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI59411.
View: Text | PDF

Intra-graft expression of genes involved in iron homeostasis predicts the development of operational tolerance in human liver transplantation

  • Text
  • PDF
Abstract

Following organ transplantation, lifelong immunosuppressive therapy is required to prevent the host immune system from destroying the allograft. This can cause severe side effects and increased recipient morbidity and mortality. Complete cessation of immunosuppressive drugs has been successfully accomplished in selected transplant recipients, providing proof of principle that operational allograft tolerance is attainable in clinical transplantation. The intra-graft molecular pathways associated with successful drug withdrawal, however, are not well defined. In this study, we analyzed sequential blood and liver tissue samples collected from liver transplant recipients enrolled in a prospective multicenter immunosuppressive drug withdrawal clinical trial. Before initiation of drug withdrawal, operationally tolerant and non-tolerant recipients differed in the intra-graft expression of genes involved in the regulation of iron homeostasis. Furthermore, as compared with non-tolerant recipients, operationally tolerant patients exhibited higher serum levels of hepcidin and ferritin and increased hepatocyte iron deposition. Finally, liver tissue gene expression measurements accurately predicted the outcome of immunosuppressive withdrawal in an independent set of patients. These results point to a critical role for iron metabolism in the regulation of intra-graft alloimmune responses in humans and provide a set of biomarkers to conduct drug-weaning trials in liver transplantation.

Authors

Felix Bohne, Marc Martínez-Llordella, Juan-José Lozano, Rosa Miquel, Carlos Benítez, María-Carlota Londoño, Tommaso-María Manzia, Roberta Angelico, Dorine W. Swinkels, Harold Tjalsma, Marta López, Juan G. Abraldes, Eliano Bonaccorsi-Riani, Elmar Jaeckel, Richard Taubert, Jacques Pirenne, Antoni Rimola, Giuseppe Tisone, Alberto Sánchez-Fueyo

×

A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1
Janesh Pillay, … , Peter Pickkers, Leo Koenderman
Janesh Pillay, … , Peter Pickkers, Leo Koenderman
Published December 12, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI57990.
View: Text | PDF

A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1

  • Text
  • PDF
Abstract

Suppression of immune responses is necessary to limit damage to host tissue during inflammation, but it can be detrimental in specific immune responses, such as sepsis and antitumor immunity. Recently, immature myeloid cells have been implicated in the suppression of immune responses in mouse models of cancer, infectious disease, bone marrow transplantation, and autoimmune disease. Here, we report the identification of a subset of mature human neutrophils (CD11cbright/CD62Ldim/CD11bbright/CD16bright) as what we believe to be a unique circulating population of myeloid cells, capable of suppressing human T cell proliferation. These cells were observed in humans in vivo during acute systemic inflammation induced by endotoxin challenge or by severe injury. Local release of hydrogen peroxide from the neutrophils into the immunological synapse between the neutrophils and T cells mediated the suppression of T cell proliferation and required neutrophil expression of the integrin Mac-1 (αMβ2). Our data demonstrate that suppression of T cell function can be accomplished by a subset of human neutrophils that can be systemically induced in response to acute inflammation. Identification of the pivotal role of neutrophil Mac-1 and ROS in this process provides a potential target for modulating immune responses in humans.

Authors

Janesh Pillay, Vera M. Kamp, Els van Hoffen, Tjaakje Visser, Tamar Tak, Jan-Willem Lammers, Laurien H. Ulfman, Luke P. Leenen, Peter Pickkers, Leo Koenderman

×

Coordinate regulation of neutrophil homeostasis by liver X receptors in mice
Cynthia Hong, … , Peter Tontonoz, Steven J. Bensinger
Cynthia Hong, … , Peter Tontonoz, Steven J. Bensinger
Published December 12, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI58393.
View: Text | PDF

Coordinate regulation of neutrophil homeostasis by liver X receptors in mice

  • Text
  • PDF
Abstract

The most abundant immune cell type is the neutrophil, a key first responder after pathogen invasion. Neutrophil numbers in the periphery are tightly regulated to prevent opportunistic infections and aberrant inflammation. In healthy individuals, more than 1 × 109 neutrophils per kilogram body weight are released from the bone marrow every 24 hours. To maintain homeostatic levels, an equivalent number of senescent cells must be cleared from circulation. Recent studies indicate that clearance of senescent neutrophils by resident tissue macrophages and DCs helps to set homeostatic levels of neutrophils via effects on the IL-23/IL-17/G-CSF cytokine axis, which stimulates neutrophil production in the bone marrow. However, the molecular events in phagocytes underlying this feedback loop have remained indeterminate. Liver X receptors (LXRs) are members of the nuclear receptor superfamily that regulate both lipid metabolic and inflammatory gene expression. Here, we demonstrate that LXRs contribute to the control of neutrophil homeostasis. Using gain- and loss-of-function models, we found that LXR signaling regulated the efficient clearance of senescent neutrophils by peripheral tissue APCs in a Mer-dependent manner. Furthermore, activation of LXR by engulfed neutrophils directly repressed the IL-23/IL-17/G-CSF granulopoietic cytokine cascade. These results provide mechanistic insight into the molecular events orchestrating neutrophil homeostasis and advance our understanding of LXRs as integrators of phagocyte function, lipid metabolism, and cytokine gene expression.

Authors

Cynthia Hong, Yoko Kidani, Noelia A-Gonzalez, Tram Phung, Ayaka Ito, Xin Rong, Katrin Ericson, Hanna Mikkola, Simon W. Beaven, Lloyd S. Miller, Wen-Hai Shao, Philip L. Cohen, Antonio Castrillo, Peter Tontonoz, Steven J. Bensinger

×

Altered CD4+ T cell homing to the gut impairs mucosal immune reconstitution in treated HIV-infected individuals
Maud Mavigner, … , Jacques Izopet, Pierre Delobel
Maud Mavigner, … , Jacques Izopet, Pierre Delobel
Published December 12, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI59011.
View: Text | PDF

Altered CD4+ T cell homing to the gut impairs mucosal immune reconstitution in treated HIV-infected individuals

  • Text
  • PDF
Abstract

Depletion of CD4+ T cells from the gut occurs rapidly during acute HIV-1 infection. This has been linked to systemic inflammation and disease progression as a result of translocation of microbial products from the gut lumen into the bloodstream. Combined antiretroviral therapy (cART) substantially restores CD4+ T cell numbers in peripheral blood, but the gut compartment remains largely depleted of such cells for poorly understood reasons. Here, we show that a lack of recruitment of CD4+ T cells to the gut could be involved in the incomplete mucosal immune reconstitution of cART-treated HIV-infected individuals. We investigated the trafficking of CD4+ T cells expressing the gut-homing receptors CCR9 and integrin α4β7 and found that many of these T cells remained in the circulation rather than repopulating the mucosa of the small intestine. This is likely because expression of the CCR9 ligand CCL25 was lower in the small intestine of HIV-infected individuals. The defective gut homing of CCR9+β7+ CD4+ T cells — a population that we found included most gut-homing Th17 cells, which have a critical role in mucosal immune defense — correlated with high plasma concentrations of markers of mucosal damage, microbial translocation, and systemic T cell activation. Our results thus describe alterations in CD4+ T cell homing to the gut that could prevent efficient mucosal immune reconstitution in HIV-infected individuals despite effective cART.

Authors

Maud Mavigner, Michelle Cazabat, Martine Dubois, Fatima-Ezzahra L’Faqihi, Mary Requena, Christophe Pasquier, Pascale Klopp, Jacques Amar, Laurent Alric, Karl Barange, Jean-Pierre Vinel, Bruno Marchou, Patrice Massip, Jacques Izopet, Pierre Delobel

×
  • ← Previous
  • 1
  • 2
  • …
  • 424
  • 425
  • 426
  • …
  • 2555
  • 2556
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts