Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,617 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 400
  • 401
  • 402
  • …
  • 2561
  • 2562
  • Next →
Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair
Giovanna Leoni, … , Andrew S. Neish, Asma Nusrat
Giovanna Leoni, … , Andrew S. Neish, Asma Nusrat
Published December 17, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI65831.
View: Text | PDF

Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair

  • Text
  • PDF
Abstract

N-formyl peptide receptors (FPRs) are critical regulators of host defense in phagocytes and are also expressed in epithelia. FPR signaling and function have been extensively studied in phagocytes, yet their functional biology in epithelia is poorly understood. We describe a novel intestinal epithelial FPR signaling pathway that is activated by an endogenous FPR ligand, annexin A1 (ANXA1), and its cleavage product Ac2-26, which mediate activation of ROS by an epithelial NADPH oxidase, NOX1. We show that epithelial cell migration was regulated by this signaling cascade through oxidative inactivation of the regulatory phosphatases PTEN and PTP-PEST, with consequent activation of focal adhesion kinase (FAK) and paxillin. In vivo studies using intestinal epithelial specific Nox1–/–IEC and AnxA1–/– mice demonstrated defects in intestinal mucosal wound repair, while systemic administration of ANXA1 promoted wound recovery in a NOX1-dependent fashion. Additionally, increased ANXA1 expression was observed in the intestinal epithelium and infiltrating leukocytes in the mucosa of ulcerative colitis patients compared with normal intestinal mucosa. Our findings delineate a novel epithelial FPR1/NOX1-dependent redox signaling pathway that promotes mucosal wound repair.

Authors

Giovanna Leoni, Ashfaqul Alam, Philipp-Alexander Neumann, J. David Lambeth, Guangjie Cheng, James McCoy, Roland S. Hilgarth, Kousik Kundu, Niren Murthy, Dennis Kusters, Chris Reutelingsperger, Mauro Perretti, Charles A. Parkos, Andrew S. Neish, Asma Nusrat

×

Hypoxia-inducible factor–dependent breast cancer–mesenchymal stem cell bidirectional signaling promotes metastasis
Pallavi Chaturvedi, … , Andre Levchenko, Gregg L. Semenza
Pallavi Chaturvedi, … , Andre Levchenko, Gregg L. Semenza
Published December 17, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI64993.
View: Text | PDF | Corrigendum

Hypoxia-inducible factor–dependent breast cancer–mesenchymal stem cell bidirectional signaling promotes metastasis

  • Text
  • PDF
Abstract

Metastasis involves critical interactions between cancer and stromal cells. Intratumoral hypoxia promotes metastasis through activation of hypoxia-inducible factors (HIFs). We demonstrate that HIFs mediate paracrine signaling between breast cancer cells (BCCs) and mesenchymal stem cells (MSCs) to promote metastasis. In a mouse orthotopic implantation model, MSCs were recruited to primary breast tumors and promoted BCC metastasis to LNs and lungs in a HIF-dependent manner. Coculture of MSCs with BCCs augmented HIF activity in BCCs. Additionally, coculture induced expression of the chemokine CXCL10 in MSCs and the cognate receptor CXCR3 in BCCs, which was augmented by hypoxia. CXCR3 expression was blocked in cocultures treated with neutralizing antibody against CXCL10. Conversely, CXCL10 expression was blocked in MSCs cocultured with BCCs that did not express CXCR3 or HIFs. MSC coculture did not enhance the metastasis of HIF-deficient BCCs. BCCs and MSCs expressed placental growth factor (PGF) and its cognate receptor VEGFR1, respectively, in a HIF-dependent manner, and CXCL10 expression by MSCs was dependent on PGF expression by BCCs. PGF promoted metastasis of BCCs and also facilitated homing of MSCs to tumors. Thus, HIFs mediate complex and bidirectional paracrine signaling between BCCs and MSCs that stimulates breast cancer metastasis.

Authors

Pallavi Chaturvedi, Daniele M. Gilkes, Carmen Chak Lui Wong, Kshitiz, Weibo Luo, Huafeng Zhang, Hong Wei, Naoharu Takano, Luana Schito, Andre Levchenko, Gregg L. Semenza

×

Autosomal recessive retinitis pigmentosa E150K opsin mice exhibit photoreceptor disorganization
Ning Zhang, … , Vladimir J. Kefalov, Krzysztof Palczewski
Ning Zhang, … , Vladimir J. Kefalov, Krzysztof Palczewski
Published December 10, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI66176.
View: Text | PDF

Autosomal recessive retinitis pigmentosa E150K opsin mice exhibit photoreceptor disorganization

  • Text
  • PDF
Abstract

The pathophysiology of the E150K mutation in the rod opsin gene associated with autosomal recessive retinitis pigmentosa (arRP) has yet to be determined. We generated knock-in mice carrying a single nucleotide change in exon 2 of the rod opsin gene resulting in the E150K mutation. This novel mouse model displayed severe retinal degeneration affecting rhodopsin’s stabilization of rod outer segments (ROS). Homozygous E150K (KK) mice exhibited early-onset retinal degeneration, with disorganized ROS structures, autofluorescent deposits in the subretinal space, and aberrant photoreceptor phagocytosis. Heterozygous (EK) mice displayed a delayed-onset milder retinal degeneration. Further, mutant receptors were mislocalized to the inner segments and perinuclear region. Though KK mouse rods displayed markedly decreased phototransduction, biochemical studies of the mutant rhodopsin revealed only minimally affected chromophore binding and G protein activation. Ablation of the chromophore by crossing KK mice with mice lacking the critical visual cycle protein LRAT slowed retinal degeneration, whereas blocking phototransduction by crossing KK mice with GNAT1-deficient mice slightly accelerated this process. This study highlights the importance of proper higher-order organization of rhodopsin in the native tissue and provides information about the signaling properties of this mutant rhodopsin. Additionally, these results suggest that patients heterozygous for the E150K mutation should be periodically reevaluated for delayed-onset retinal degeneration.

Authors

Ning Zhang, Alexander V. Kolesnikov, Beata Jastrzebska, Debarshi Mustafi, Osamu Sawada, Tadao Maeda, Christel Genoud, Andreas Engel, Vladimir J. Kefalov, Krzysztof Palczewski

×

IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis
Magdalena Huber, … , Thomas Kamradt, Michael Lohoff
Magdalena Huber, … , Thomas Kamradt, Michael Lohoff
Published December 10, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI63681.
View: Text | PDF

IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis

  • Text
  • PDF
Abstract

IL-17–producing CD8+ T (Tc17) cells are detectible in multiple sclerosis (MS) lesions; however, their contribution to the disease is unknown. To identify functions of Tc17 cells, we induced EAE, a murine model of MS, in mice lacking IFN regulatory factor 4 (IRF4). IRF4-deficient mice failed to generate Tc17 and Th17 cells and were resistant to EAE. After adoptive transfer of WT CD8+ T cells and subsequent immunization for EAE induction in these mice, the CD8+ T cells developed a Tc17 phenotype in the periphery but could not infiltrate the CNS. Similarly, transfer of small numbers of WT CD4+ T cells alone did not evoke EAE, but when transferred together with CD8+ T cells, IL-17–producing CD4+ (Th17) T cells accumulated in the CNS and mice developed severe disease. Th17 accumulation and development of EAE required IL-17A production by CD8+ T cells, suggesting that Tc17 cells are required to promote CD4+ T cell–mediated induction of EAE. Accordingly, patients with early-stage MS harbored a greater number of Tc17 cells in the cerebrospinal fluid than in peripheral blood. Our results reveal that Tc17 cells contribute to the initiation of CNS autoimmunity in mice and humans by supporting Th17 cell pathogenicity.

Authors

Magdalena Huber, Sylvia Heink, Axel Pagenstecher, Katharina Reinhard, Josephine Ritter, Alexander Visekruna, Anna Guralnik, Nadine Bollig, Katharina Jeltsch, Christina Heinemann, Eva Wittmann, Thorsten Buch, Olivia Prazeres da Costa, Anne Brüstle, Dirk Brenner, Tak W. Mak, Hans-Willi Mittrücker, Björn Tackenberg, Thomas Kamradt, Michael Lohoff

×

MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors
Walter J. Jessen, … , Timothy P. Cripe, Nancy Ratner
Walter J. Jessen, … , Timothy P. Cripe, Nancy Ratner
Published December 10, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI60578.
View: Text | PDF

MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors

  • Text
  • PDF
Abstract

Neurofibromatosis type 1 (NF1) patients develop benign neurofibromas and malignant peripheral nerve sheath tumors (MPNST). These incurable peripheral nerve tumors result from loss of NF1 tumor suppressor gene function, causing hyperactive Ras signaling. Activated Ras controls numerous downstream effectors, but specific pathways mediating the effects of hyperactive Ras in NF1 tumors are unknown. We performed cross-species transcriptome analyses of mouse and human neurofibromas and MPNSTs and identified global negative feedback of genes that regulate Ras/Raf/MEK/ERK signaling in both species. Nonetheless, ERK activation was sustained in mouse and human neurofibromas and MPNST. We used a highly selective pharmacological inhibitor of MEK, PD0325901, to test whether sustained Ras/Raf/MEK/ERK signaling contributes to neurofibroma growth in a neurofibromatosis mouse model (Nf1fl/fl;Dhh-Cre) or in NF1 patient MPNST cell xenografts. PD0325901 treatment reduced aberrantly proliferating cells in neurofibroma and MPNST, prolonged survival of mice implanted with human MPNST cells, and shrank neurofibromas in more than 80% of mice tested. Our data demonstrate that deregulated Ras/ERK signaling is critical for the growth of NF1 peripheral nerve tumors and provide a strong rationale for testing MEK inhibitors in NF1 clinical trials.

Authors

Walter J. Jessen, Shyra J. Miller, Edwin Jousma, Jianqiang Wu, Tilat A. Rizvi, Meghan E. Brundage, David Eaves, Brigitte Widemann, Mi-Ok Kim, Eva Dombi, Jessica Sabo, Atira Hardiman Dudley, Michiko Niwa-Kawakita, Grier P. Page, Marco Giovannini, Bruce J. Aronow, Timothy P. Cripe, Nancy Ratner

×

Estrogen receptor-α signaling in osteoblast progenitors stimulates cortical bone accrual
Maria Almeida, … , Charles A. O’Brien, Stavros C. Manolagas
Maria Almeida, … , Charles A. O’Brien, Stavros C. Manolagas
Published December 10, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI65910.
View: Text | PDF

Estrogen receptor-α signaling in osteoblast progenitors stimulates cortical bone accrual

  • Text
  • PDF
Abstract

The detection of estrogen receptor-α (ERα) in osteoblasts and osteoclasts over 20 years ago suggested that direct effects of estrogens on both of these cell types are responsible for their beneficial effects on the skeleton, but the role of ERα in osteoblast lineage cells has remained elusive. In addition, estrogen activation of ERα in osteoclasts can only account for the protective effect of estrogens on the cancellous, but not the cortical, bone compartment that represents 80% of the entire skeleton. Here, we deleted ERα at different stages of differentiation in murine osteoblast lineage cells. We found that ERα in osteoblast progenitors expressing Osterix1 (Osx1) potentiates Wnt/β-catenin signaling, thereby increasing proliferation and differentiation of periosteal cells. Further, this signaling pathway was required for optimal cortical bone accrual at the periosteum in mice. Notably, this function did not require estrogens. The osteoblast progenitor ERα mediated a protective effect of estrogens against endocortical, but not cancellous, bone resorption. ERα in mature osteoblasts or osteocytes did not influence cancellous or cortical bone mass. Hence, the ERα in both osteoblast progenitors and osteoclasts functions to optimize bone mass but at distinct bone compartments and in response to different cues.

Authors

Maria Almeida, Srividhya Iyer, Marta Martin-Millan, Shoshana M. Bartell, Li Han, Elena Ambrogini, Melda Onal, Jinhu Xiong, Robert S. Weinstein, Robert L. Jilka, Charles A. O’Brien, Stavros C. Manolagas

×

Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion
Shrikant R. Mulay, … , Helen Liapis, Hans-Joachim Anders
Shrikant R. Mulay, … , Helen Liapis, Hans-Joachim Anders
Published December 10, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI63679.
View: Text | PDF

Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion

  • Text
  • PDF
Abstract

Nephrocalcinosis, acute calcium oxalate (CaOx) nephropathy, and renal stone disease can lead to inflammation and subsequent renal failure, but the underlying pathological mechanisms remain elusive. Other crystallopathies, such as gout, atherosclerosis, and asbestosis, trigger inflammation and tissue remodeling by inducing IL-1β secretion, leading us to hypothesize that CaOx crystals may induce inflammation in a similar manner. In mice, intrarenal CaOx deposition induced tubular damage, cytokine expression, neutrophil recruitment, and renal failure. We found that CaOx crystals activated murine renal DCs to secrete IL-1β through a pathway that included NLRP3, ASC, and caspase-1. Despite a similar amount of crystal deposits, intrarenal inflammation, tubular damage, and renal dysfunction were abrogated in mice deficient in MyD88; NLRP3, ASC, and caspase-1; IL-1R; or IL-18. Nephropathy was attenuated by DC depletion, ATP depletion, or therapeutic IL-1 antagonism. These data demonstrated that CaOx crystals trigger IL-1β–dependent innate immunity via the NLRP3/ASC/caspase-1 axis in intrarenal mononuclear phagocytes and directly damage tubular cells, leading to the release of the NLRP3 agonist ATP. Furthermore, these results suggest that IL-1β blockade may prevent renal damage in nephrocalcinosis.

Authors

Shrikant R. Mulay, Onkar P. Kulkarni, Khader V. Rupanagudi, Adriana Migliorini, Murthy N. Darisipudi, Akosua Vilaysane, Daniel Muruve, Yan Shi, Fay Munro, Helen Liapis, Hans-Joachim Anders

×

Brown adipose tissue regulates glucose homeostasis and insulin sensitivity
Kristin I. Stanford, … , Yu-Hua Tseng, Laurie J. Goodyear
Kristin I. Stanford, … , Yu-Hua Tseng, Laurie J. Goodyear
Published December 10, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI62308.
View: Text | PDF

Brown adipose tissue regulates glucose homeostasis and insulin sensitivity

  • Text
  • PDF
Abstract

Brown adipose tissue (BAT) is known to function in the dissipation of chemical energy in response to cold or excess feeding, and also has the capacity to modulate energy balance. To test the hypothesis that BAT is fundamental to the regulation of glucose homeostasis, we transplanted BAT from male donor mice into the visceral cavity of age- and sex-matched recipient mice. By 8–12 weeks following transplantation, recipient mice had improved glucose tolerance, increased insulin sensitivity, lower body weight, decreased fat mass, and a complete reversal of high-fat diet–induced insulin resistance. Increasing the quantity of BAT transplanted into recipient mice further improved the metabolic effects of transplantation. BAT transplantation increased insulin-stimulated glucose uptake in vivo into endogenous BAT, white adipose tissue (WAT), and heart muscle but, surprisingly, not skeletal muscle. The improved metabolic profile was lost when the BAT used for transplantation was obtained from Il6–knockout mice, demonstrating that BAT-derived IL-6 is required for the profound effects of BAT transplantation on glucose homeostasis and insulin sensitivity. These findings reveal a previously under-appreciated role for BAT in glucose metabolism.

Authors

Kristin I. Stanford, Roeland J.W. Middelbeek, Kristy L. Townsend, Ding An, Eva B. Nygaard, Kristen M. Hitchcox, Kathleen R. Markan, Kazuhiro Nakano, Michael F. Hirshman, Yu-Hua Tseng, Laurie J. Goodyear

×

Vertical T cell immunodominance and epitope entropy determine HIV-1 escape
Michael K.P. Liu, … , Andrew McMichael, Nilu Goonetilleke
Michael K.P. Liu, … , Andrew McMichael, Nilu Goonetilleke
Published December 10, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI65330.
View: Text | PDF

Vertical T cell immunodominance and epitope entropy determine HIV-1 escape

  • Text
  • PDF
Abstract

HIV-1 accumulates mutations in and around reactive epitopes to escape recognition and killing by CD8+ T cells. Measurements of HIV-1 time to escape should therefore provide information on which parameters are most important for T cell–mediated in vivo control of HIV-1. Primary HIV-1–specific T cell responses were fully mapped in 17 individuals, and the time to virus escape, which ranged from days to years, was measured for each epitope. While higher magnitude of an individual T cell response was associated with more rapid escape, the most significant T cell measure was its relative immunodominance measured in acute infection. This identified subject-level or “vertical” immunodominance as the primary determinant of in vivo CD8+ T cell pressure in HIV-1 infection. Conversely, escape was slowed significantly by lower population variability, or entropy, of the epitope targeted. Immunodominance and epitope entropy combined to explain half of all the variability in time to escape. These data explain how CD8+ T cells can exert significant and sustained HIV-1 pressure even when escape is very slow and that within an individual, the impacts of other T cell factors on HIV-1 escape should be considered in the context of immunodominance.

Authors

Michael K.P. Liu, Natalie Hawkins, Adam J. Ritchie, Vitaly V. Ganusov, Victoria Whale, Simon Brackenridge, Hui Li, Jeffrey W. Pavlicek, Fangping Cai, Melissa Rose-Abrahams, Florette Treurnicht, Peter Hraber, Catherine Riou, Clive Gray, Guido Ferrari, Rachel Tanner, Li-Hua Ping, Jeffrey A. Anderson, Ronald Swanstrom, CHAVI Core B, Myron Cohen, Salim S. Abdool Karim, Barton Haynes, Persephone Borrow, Alan S. Perelson, George M. Shaw, Beatrice H. Hahn, Carolyn Williamson, Bette T. Korber, Feng Gao, Steve Self, Andrew McMichael, Nilu Goonetilleke

×

SMRT-GPS2 corepressor pathway dysregulation coincides with obesity-linked adipocyte inflammation
Amine Toubal, … , Eckardt Treuter, Nicolas Venteclef
Amine Toubal, … , Eckardt Treuter, Nicolas Venteclef
Published December 10, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI64052.
View: Text | PDF

SMRT-GPS2 corepressor pathway dysregulation coincides with obesity-linked adipocyte inflammation

  • Text
  • PDF
Abstract

Low-grade chronic inflammation is a major characteristic of obesity and results from deregulated white adipose tissue function. Consequently, there is interest in identifying the underlying regulatory mechanisms and components that drive adipocyte inflammation. Here, we report that expression of the transcriptional corepressor complex subunits GPS2 and SMRT was significantly reduced in obese adipose tissue, inversely correlated to inflammatory status, and was restored upon gastric bypass surgery–induced weight loss in morbid obesity. These alterations correlated with reduced occupancy of the corepressor complex at inflammatory promoters, providing a mechanistic explanation for elevated inflammatory transcription. In support of these correlations, RNAi-mediated depletion of GPS2 and SMRT from cultured human adipocytes promoted derepression of inflammatory transcription and elevation of obesity-associated inflammatory markers, such as IL-6 and MCP-1. Furthermore, we identified a regulatory cascade containing PPARγ and TWIST1 that controlled the expression of GPS2 and SMRT in human adipocytes. These findings were clinically relevant, because treatment of diabetic obese patients with pioglitazone, an antidiabetic and antiinflammatory PPARγ agonist, restored expression of TWIST1, GPS2, and SMRT in adipose tissue. Collectively, our findings identify alterations in a regulatory transcriptional network in adipocytes involving the dysregulation of a specific corepressor complex as among the initiating events promoting adipose tissue inflammation in human obesity.

Authors

Amine Toubal, Karine Clément, Rongrong Fan, Patricia Ancel, Veronique Pelloux, Christine Rouault, Nicolas Veyrie, Agnes Hartemann, Eckardt Treuter, Nicolas Venteclef

×
  • ← Previous
  • 1
  • 2
  • …
  • 400
  • 401
  • 402
  • …
  • 2561
  • 2562
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts