Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Genetics

  • 335 Articles
  • 2 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 32
  • 33
  • 34
  • Next →
The α1D-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction
Akito Tanoue, … , Satoshi Takeo, Gozoh Tsujimoto
Akito Tanoue, … , Satoshi Takeo, Gozoh Tsujimoto
Published March 15, 2002
Citation Information: J Clin Invest. 2002;109(6):765-775. https://doi.org/10.1172/JCI14001.
View: Text | PDF

The α1D-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction

  • Text
  • PDF
Abstract

To investigate the physiological role of the α1D-adrenergic receptor (α1D-AR) subtype, we created mice lacking the α1D-AR (α1D–/–) by gene targeting and characterized their cardiovascular function. In α1D–/– mice, the RT-PCR did not detect any transcript of the α1D-AR in any tissue examined, and there was no apparent upregulation of other α1-AR subtypes. Radioligand binding studies showed that α1-AR binding capacity in the aorta was lost, while that in the heart was unaltered in α1D–/– mice. Non-anesthetized α1D–/– mice maintained significantly lower basal systolic and mean arterial blood pressure conditions, relative to wild-type mice, and they showed no significant change in heart rate or in cardiac function, as assessed by echocardiogram. Besides hypotension, the pressor responses to phenylephrine and norepinephrine were decreased by 30–40% in α1D–/– mice. Furthermore, the contractile response of the aorta and the pressor response of isolated perfused mesenteric arterial beds to α1-AR stimulation were markedly reduced in α1D–/– mice. We conclude that the α1D-AR participates directly in sympathetic regulation of systemic blood pressure by vasoconstriction.

Authors

Akito Tanoue, Yoshihisa Nasa, Takaaki Koshimizu, Hitomi Shinoura, Sayuri Oshikawa, Takayuki Kawai, Sachie Sunada, Satoshi Takeo, Gozoh Tsujimoto

×

Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCID-hu model
Thomas M. Zollner, … , Roland Kaufmann, Wolf-Henning Boehncke
Thomas M. Zollner, … , Roland Kaufmann, Wolf-Henning Boehncke
Published March 1, 2002
Citation Information: J Clin Invest. 2002;109(5):671-679. https://doi.org/10.1172/JCI12736.
View: Text | PDF

Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCID-hu model

  • Text
  • PDF
Abstract

There is increasing evidence that bacterial superantigens contribute to inflammation and T cell responses in psoriasis. Psoriatic inflammation entails a complex series of inductive and effector processes that require the regulated expression of various proinflammatory genes, many of which require NF-κB for maximal trans-activation. PS-519 is a potent and selective proteasome inhibitor based upon the naturally occurring compound lactacystin, which inhibits NF-κB activation by blocking the degradation of its inhibitory protein IκB. We report that proteasome inhibition by PS-519 reduces superantigen-mediated T cell–activation in vitro and in vivo. Proliferation was inhibited along with the expression of very early (CD69), early (CD25), and late T cell (HLA-DR) activation molecules. Moreover, expression of E-selectin ligands relevant to dermal T cell homing was reduced, as was E-selectin binding in vitro. Finally, PS-519 proved to be therapeutically effective in a SCID-hu xenogeneic psoriasis transplantation model. We conclude that inhibition of the proteasome, e.g., by PS-519, is a promising means to treat T cell–mediated disorders such as psoriasis.

Authors

Thomas M. Zollner, Maurizio Podda, Christine Pien, Peter J. Elliott, Roland Kaufmann, Wolf-Henning Boehncke

×

Partial deficiency of Thyroid transcription factor 1 produces predominantly neurological defects in humans and mice
Joachim Pohlenz, … , Shioko Kimura, Samuel Refetoff
Joachim Pohlenz, … , Shioko Kimura, Samuel Refetoff
Published February 15, 2002
Citation Information: J Clin Invest. 2002;109(4):469-473. https://doi.org/10.1172/JCI14192.
View: Text | PDF

Partial deficiency of Thyroid transcription factor 1 produces predominantly neurological defects in humans and mice

  • Text
  • PDF
Abstract

Three genes, TTF1, TTF2, and PAX8, involved in thyroid gland development and migration have been identified. Yet systematic screening for defects in these genes in thyroid dysgenesis gave essentially negative results. In particular, no TTF1 gene defects were found in 76 individuals with thyroid dysgenesis even though a deletion of this gene in the mouse results in thyroid and lung agenesis and defective diencephalon. We report a 6-year-old boy with predominant dyskinesia, neonatal respiratory distress, and mild hyperthyrotropinemia. One allele of his TTF1 gene had a guanidine inserted into codon 86 producing a nonsense protein of 407, rather than 371, amino acids. The mutant TTF1 did not bind to its canonical cis-element or transactivate a reporter gene driven by the thyroglobulin promoter, a natural target of TTF1. Failure of the mutant TTF1 to interfere with binding and transactivation functions of the wild-type TTF1 suggested that the syndrome was caused by haploinsufficiency. This was confirmed in mice heterozygous for Ttf1 gene deletion, heretofore considered to be normal. Compared with wild-type littermates, Ttf1+/– mice had poor coordination and a significant elevation of serum thyrotropin. Therefore, haploinsufficiency of the TTF1 gene results in a predominantly neurological phenotype and secondary hyperthyrotropinemia.

Authors

Joachim Pohlenz, Alexandra Dumitrescu, Dorothee Zundel, Ursula Martiné, Winfried Schönberger, Eugene Koo, Roy E. Weiss, Ronald N. Cohen, Shioko Kimura, Samuel Refetoff

×

Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX2-1 haploinsufficiency
Heiko Krude, … , Roberto DiLauro, Annette Grüters
Heiko Krude, … , Roberto DiLauro, Annette Grüters
Published February 15, 2002
Citation Information: J Clin Invest. 2002;109(4):475-480. https://doi.org/10.1172/JCI14341.
View: Text | PDF

Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX2-1 haploinsufficiency

  • Text
  • PDF
Abstract

The occurrence of neurological symptoms and developmental delay in patients affected by congenital hypothyroidism (CH) has been attributed to the lack of thyroid hormone in the developing CNS. Accordingly, after the introduction of neonatal screening programs for CH, which allowed early and adequate treatment, an almost normal outcome for most CH patients could be achieved. However, a few patients did not reach this favorable outcome despite early and adequate treatment. Here we describe five patients with variable degrees of CH who suffered from choreoathetosis, muscular hypotonia, and pulmonary problems, an association of symptoms that had not been described before this study. Since this clinical picture matched the phenotype of mice targeted for deletion of the transcription factor gene Nkx2-1, we investigated the human NKX2-1 gene in these five patients. We found heterozygous loss of function mutations in each of these five patients, e.g., one complete gene deletion, one missense mutation (G2626T), and three nonsense mutations (2595insGG, C2519A, C1302A). Therefore, the unfavorable outcome in patients with CH, especially those with choreoathetosis and pulmonary symptoms, can be explained by mutations in the NKX2-1 gene rather than by hypothyroidism. Moreover, the association of symptoms in the patients with NKX2-1 mutations points to an important role of human NKX2-1 in the development and function of thyroid, basal ganglia, and lung, as already described for rodents.

Authors

Heiko Krude, Barbara Schütz, Heike Biebermann, Arpad von Moers, Dirk Schnabel, Heidi Neitzel, Holger Tönnies, Dagmar Weise, Antony Lafferty, Siegfried Schwarz, Mario DeFelice, Andreas von Deimling, Frank van Landeghem, Roberto DiLauro, Annette Grüters

×

Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease
Xiaoying Hou, … , David R. Beier, Lisa M. Guay-Woodford
Xiaoying Hou, … , David R. Beier, Lisa M. Guay-Woodford
Published February 15, 2002
Citation Information: J Clin Invest. 2002;109(4):533-540. https://doi.org/10.1172/JCI14099.
View: Text | PDF

Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease

  • Text
  • PDF
Abstract

The congenital polycystic kidney (cpk) mutation is the most extensively characterized mouse model of polycystic kidney disease (PKD). The renal cystic disease is fully expressed in homozygotes and is strikingly similar to human autosomal recessive PKD (ARPKD), whereas genetic background modulates the penetrance of the corresponding defect in the developing biliary tree. We now describe the positional cloning, mutation analysis, and expression of a novel gene that is disrupted in cpk mice. The cpk gene is expressed primarily in the kidney and liver and encodes a hydrophilic, 145–amino acid protein, which we term cystin. When expressed exogenously in polarized renal epithelial cells, cystin is detected in cilia, and its expression overlaps with polaris, another PKD-related protein. We therefore propose that the single epithelial cilium is important in the functional differentiation of polarized epithelia and that ciliary dysfunction underlies the PKD phenotype in cpk mice.

Authors

Xiaoying Hou, Michal Mrug, Bradley K. Yoder, Elliot J. Lefkowitz, Gabriel Kremmidiotis, Peter D’Eustachio, David R. Beier, Lisa M. Guay-Woodford

×
  • ← Previous
  • 1
  • 2
  • …
  • 32
  • 33
  • 34
  • Next →
A hop, exon skip, and a jump for muscular dystrophy
Quan Gao and colleagues developed an exon skipping strategy that generates a truncated, functional γ-sarcoglycan protein and improves defects in muscular dystrophy models…
Published October 12, 2015
Scientific Show StopperGenetics

A curve in the spine
Shunmoogum Patten and colleagues identify variants of POC5 that are associated with idiopathic scoliosis…
Published February 2, 2015
Scientific Show StopperGenetics
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts