Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

In-Press Preview

  • 766 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 37
  • 38
  • 39
  • …
  • 76
  • 77
  • Next →
Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases
Adriana A. de Jesus, … , Scott W. Canna, Raphaela Goldbach-Mansky
Adriana A. de Jesus, … , Scott W. Canna, Raphaela Goldbach-Mansky
Published December 24, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129301.
View: Text | PDF

Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases

  • Text
  • PDF
Abstract

BACKGROUND. Undifferentiated systemic autoinflammatory diseases (USAID) present diagnostic and therapeutic challenges. Chronic interferon (IFN) signaling and cytokine dysregulation may identify diseases with available targeted treatments. METHODS. Sixty-six consecutively-referred USAID patients underwent standardized evaluation of Type-I IFN-response-gene-signature (IRG-S); cytokine profiling, and genetic evaluation by next-generation sequencing. RESULTS. Thirty-six USAID patients (55%) had elevated IRG-S. Neutrophilic panniculitis (40% vs 0%), basal ganglia calcifications (46% vs 0%), interstitial lung disease (47% vs 5%), and myositis (60% vs 10%) were more prevalent in patients with elevated IRG-S. Moderate IRG-S elevation and highly-elevated serum IL-18 distinguished eight patients with pulmonary alveolar proteinosis (PAP) and recurrent macrophage activation syndrome (MAS). Among patients with panniculitis and progressive cytopenias, two patients were compound heterozygous for novel LRBA mutations, four patients harbored novel splice variants in IKBKG/NEMO, and six patients had de novo frameshift mutations in SAMD9L. Of additional 12 patients with elevated IRG-S and CANDLE-, SAVI- or Aicardi-Goutières-Syndrome (AGS)-like phenotypes, five patients carried mutations in either SAMHD1, TREX1, PSMB8 or PSMG2. Two patients had anti-MDA5 autoantibody-positive juvenile dermatomyositis, and seven could not be classified. Patients with LRBA, IKBKG/NEMO and SAMD9L mutations showed a pattern of IRG elevation that suggests prominent NF-κB activation different from the canonical interferonopathies CANDLE, SAVI and AGS. CONCLUSIONS. In patients with elevated IRG-S, we identified characteristic clinical features and 3 additional autoinflammatory diseases: IL-18-mediated PAP and recurrent MAS (IL-18PAP-MAS), NEMO∆5-associated autoinflammatory syndrome (NEMO-NDAS), and SAMD9L-associated autoinflammatory disease (SAMD9L-SAAD). The IRG-S expands the diagnostic armamentarium in evaluating USAIDs and points to different pathways regulating IRG expression.

Authors

Adriana A. de Jesus, Yanfeng Hou, Stephen Brooks, Louise Malle, Angelique Biancotto, Yan Huang, Katherine R. Calvo, Bernadette Marrero, Susan Moir, Andrew J. Oler, Zuoming Deng, Gina A. Montealegre Sanchez, Amina Ahmed, Eric Allenspach, Bita Arabshahi, Edward Behrens, Susanne Benseler, Liliana Bezrodnik, Sharon Bout-Tabaku, AnneMarie C. Brescia, Diane Brown, Jon M. Burnham, María Soledad Caldirola, Ruy Carrasco, Alice Y. Chan, Rolando Cimaz, Paul Dancey, Jason Dare, Marietta DeGuzman, Victoria Dimitriades, Ian Ferguson, Polly Ferguson, Laura Finn, Marco Gattorno, Alexei A. Grom, Eric P. Hanson, Philip J. Hashkes, Christian M. Hedrich, Ronit Herzog, Gerd Horneff, Rita Jerath, Elizabeth Kessler, Hanna Kim, Daniel J. Kingsbury, Ronald M. Laxer, Pui Y. Lee, Min Ae Lee-Kirsch, Laura Lewandowski, Suzanne Li, Vibke Lilleby, Vafa Mammadova, Lakshmi N. Moorthy, Gulnara Nasrullayeva, Kathleen M. O’Neil, Karen Onel, Seza Ozen, Nancy Pan, Pascal Pillet, Daniela G.P. Piotto, Marilynn G. Punaro, Andreas Reiff, Adam Reinhardt, Lisa G. Rider, Rafael Rivas-Chacon, Tova Ronis, Angela Rösen-Wolff, Johannes Roth, Natasha Mckerran Ruth, Marite Rygg, Heinrike Schmeling, Grant Schulert, Christiaan Scott, Gisela Seminario, Andrew Shulman, Vidya Sivaraman, Mary Beth Son, Yuriy Stepanovskyy, Elizabeth Stringer, Sara Taber, Maria Teresa Terreri, Cynthia Tifft, Troy Torgerson, Laura Tosi, Annet Van Royen-Kerkhof, Theresa Wampler Muskardin, Scott W. Canna, Raphaela Goldbach-Mansky

×

The mir181ab1 cluster promotes kras-driven oncogenesis and progression in lung and pancreas
Karmele Valencia, … , E. Alejandro Sweet-Cordero, Silvestre Vicent
Karmele Valencia, … , E. Alejandro Sweet-Cordero, Silvestre Vicent
Published December 24, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129012.
View: Text | PDF

The mir181ab1 cluster promotes kras-driven oncogenesis and progression in lung and pancreas

  • Text
  • PDF
Abstract

Few therapies are currently available for patients with KRAS-driven cancers, highlighting the need to identify new molecular targets that modulate central downstream effector pathways. Here we found the miRNA cluster mir181ab1 as a key modulator of KRAS-driven oncogenesis. Ablation of Mir181ab1 in genetically-engineered mouse models of Kras-driven lung and pancreatic cancer was deleterious to tumor initiation and progression. Expression of both resident miRNAs in the Mir181ab1 cluster, miR181a1 and miR181b1, was necessary to rescue the Mir181ab1-loss phenotype underscoring their non-redundant role. In human cancer cells, depletion of miR181ab1 impaired proliferation and 3D growth, whereas overexpression provided a proliferative advantage. Lastly, we unveiled miR181ab1-regulated genes responsible for this phenotype. These studies identified what we believe to be a previously unknown role for miR181ab1 as a potential therapeutic target in two highly aggressive and difficult to treat KRAS-mutated cancers.

Authors

Karmele Valencia, Oihane Erice, Kaja Kostyrko, Simone Hausmann, Elizabeth Guruceaga, Anuradha Thathireddy, Natasha M. Flores, Leanne C. Sayles, Alex G. Lee, Rita Fragoso, Tian-Qiang Sun, Adrian Vallejo, Marta Roman, Rodrigo Entrialgo-Cadierno, Itziar Migueliz, Nerea Razquin, Puri Fortes, Fernando Lecanda, Jun Lu, Mariano Ponz-Sarvise, Chang-Zheng Chen, Pawel K. Mazur, E. Alejandro Sweet-Cordero, Silvestre Vicent

×

Genomics of lethal prostate cancer at diagnosis and castration-resistance
Joaquin Mateo, … , Suzanne Carreira, Johann S. de Bono
Joaquin Mateo, … , Suzanne Carreira, Johann S. de Bono
Published December 24, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI132031.
View: Text | PDF

Genomics of lethal prostate cancer at diagnosis and castration-resistance

  • Text
  • PDF
Abstract

Genomics of primary prostate cancer differs from that of metastatic castration-resistant prostate cancer (mCRPC). We studied genomic aberrations in primary prostate cancer biopsies from patients who developed mCRPC, also studying matching, same patient, diagnostic and mCRPC biopsies following treatment. We profiled 470 treatment-naïve, prostate cancer diagnostic biopsies and for 61 cases, mCRPC biopsies using targeted and low-pass whole genome sequencing (n = 52). Descriptive statistics were used to summarize mutation and copy number profile. Prevalence was compared using Fisher's exact test. Survival correlations were studied using log-rank test. TP53 (27%) and PTEN (12%) and DDR gene defects (BRCA2 7%; CDK12 5%; ATM 4%) were commonly detected. TP53, BRCA2, and CDK12 mutations were significantly commoner than described in the TCGA cohort. Patients with RB1 loss in the primary tumour had a worse prognosis. Among 61 men with matched hormone-naïve and mCRPC biopsies, differences were identified in AR, TP53, RB1, and PI3K/AKT mutational status between same-patient samples. In conclusion, the genomics of diagnostic prostatic biopsies acquired from men who develop mCRPC differs to that of the primary prostatic cancers. RB1/TP53/AR aberrations are enriched in later stages, but the prevalence of DDR defects in diagnostic samples is similar to mCRPC.

Authors

Joaquin Mateo, George Seed, Claudia Bertan, Pasquale Rescigno, David Dolling, Ines Figueiredo, Susana Miranda, Daniel Nava Rodrigues, Bora Gurel, Matthew Clarke, Mark Atkin, Rob Chandler, Carlo Messina, Semini Sumanasuriya, Diletta Bianchini, Maialen Barrero, Antonella Petremolo, Zafeiris Zafeiriou, Mariane Sousa Fontes, Raquel Perez-Lopez, Nina Tunariu, Ben A. Fulton, Robert Jones, Ursula B. McGovern, Christy Ralph, Mohini Varughese, Omi Parikh, Suneil Jain, Tony Elliott, Shahneen Sandhu, Nuria Porta, Emma Hall, Wei Yuan, Suzanne Carreira, Johann S. de Bono

×

Small molecule JQ1 promotes prostate cancer invasion via BET-independent inactivation of FOXA1
Leiming Wang, … , Sophia Y. Tsai, Ming-Jer Tsai
Leiming Wang, … , Sophia Y. Tsai, Ming-Jer Tsai
Published December 24, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI126327.
View: Text | PDF

Small molecule JQ1 promotes prostate cancer invasion via BET-independent inactivation of FOXA1

  • Text
  • PDF
Abstract

Recent findings have shown that inhibitors targeting BET (bromodomain and extraterminal domain) proteins, such as the small molecule JQ1, are potent growth inhibitors of many cancers and hold promise for cancer therapy. However, some reports also have revealed that JQ1 can activate additional oncogenic pathways and may affect EMT (epithelial mesenchymal transition). Therefore, it is important to address the potential unexpected effect of JQ1 treatment, such as cell invasion and metastasis. Here, we showed that in prostate cancer, JQ1 inhibited cancer cell growth but promoted invasion and metastasis in a BET protein independent manner. Multiple invasion pathways including EMT, BMP (bone morphogenetic protein) signaling, chemokine signaling and focal adhesion pathway were activated by JQ1 to promote invasion. Notably, JQ1 induced upregulation of invasion genes through inhibition of FOXA1, an invasion suppressor in prostate cancer. JQ1 directly interacted with FOXA1, inactivated FOXA1 binding to its interacting repressors, TLE3, HDAC7, and NFIC, thus blocking FOXA1 repressive function and activating the invasion genes. Our finding indicates that JQ1 has an unexpected effect of promoting invasion in prostate cancer. Thus, the ill effect of JQ1 or its derived therapeutic agents cannot be ignored during cancer treatment, especially in FOXA1 related cancers.

Authors

Leiming Wang, Mafei Xu, Chung-Yang Kao, Sophia Y. Tsai, Ming-Jer Tsai

×

HPV16 drives cancer immune escape via NLRX1-mediated degradation of STING
Xiaobo Luo, … , Qianming Chen, Yu L. Lei
Xiaobo Luo, … , Qianming Chen, Yu L. Lei
Published December 24, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129497.
View: Text | PDF

HPV16 drives cancer immune escape via NLRX1-mediated degradation of STING

  • Text
  • PDF
Abstract

The incidence of human papillomavirus (HPV)+ head and neck squamous cell carcinoma (HNSCC) has surpassed that of cervical cancer and is projected to increase rapidly until 2060. The co-evolution of HPV with transforming epithelial cells leads to the shutdown of host immune detection. Targeting proximal viral nucleic acid-sensing machinery is an evolutionarily conserved strategy among viruses to enable immune evasion. However, E7 from the dominant HPV subtype-16 in HNSCC shares low homology with HPV18 E7, which was shown to inhibit the STING-DNA-sensing pathway. The mechanisms by which HPV16 suppresses STING remain unknown. Recently, we characterized the role of the STING-type-I interferon (IFN-I) pathway in maintaining immunogenicity of HNSCC in mouse models. Here we extended those findings into clinical domain utilizing tissue microarrays and machine-learning-enhanced profiling of STING signatures with immune subsets. We additionally showed that HPV16 E7 employs distinct mechanisms than HPV18 E7 to antagonize the STING pathway. We identified NLRX1 as a critical intermediary partner to facilitate HPV16 E7-potentiated STING turnover. The depletion of NLRX1 resulted in significantly improved IFN-I-dependent T-cell infiltration profiles and tumor control. Overall, we discovered a unique HPV16 viral strategy to thwart host innate immune detection that can be further exploited to restore cancer immunogenicity.

Authors

Xiaobo Luo, Christopher R. Donnelly, Wang Gong, Blake R. Heath, Yuning Hao, Lorenza A. Donnelly, Toktam Moghbeli, Yee Sun Tan, Xin Lin, Emily Bellile, Benjamin A. Kansy, Thomas E. Carey, J. Chad Brenner, Lei Cheng, Peter J. Polverini, Meredith A. Morgan, Haitao Wen, Mark E. Prince, Robert L. Ferris, Yuying Xie, Simon Young, Gregory T. Wolf, Qianming Chen, Yu L. Lei

×

Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia
Szymon Klossowski, … , Tomasz Cierpicki, Jolanta Grembecka
Szymon Klossowski, … , Tomasz Cierpicki, Jolanta Grembecka
Published December 19, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129126.
View: Text | PDF

Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia

  • Text
  • PDF
Abstract

The protein-protein interaction between menin and Mixed Lineage Leukemia 1 (MLL1) plays a critical role in acute leukemias with translocations of the MLL1 gene or with mutations in the Nucleophosmin 1 (NPM1) gene. As a step toward clinical translation of menin-MLL1 inhibitors, we report development of MI-3454, a highly potent and orally bioavailable inhibitor of the menin-MLL1 interaction. MI-3454 profoundly inhibited proliferation and induced differentiation in acute leukemia cells and primary patient samples with MLL1 translocations or NPM1 mutations. When applied as a single agent, MI-3454 induced complete remission or regression of leukemia in mouse models of MLL1-rearranged or NPM1-mutated leukemia, including patient-derived xenograft models, through downregulation of key genes involved in leukemogenesis. We also identified MEIS1 as a potential pharmacodynamic biomarker of treatment response with MI-3454 in leukemia, and demonstrated that this compound is well tolerated and did not impair normal hematopoiesis in mice. Overall, this study demonstrates for the first time profound activity of the menin-MLL1 inhibitor as a single agent in clinically relevant PDX models of leukemia. These data provide a strong rationale for clinical translation of MI-3454 or its analogs for leukemia patients with MLL1-rearrangements or NPM1 mutations

Authors

Szymon Klossowski, Hongzhi Miao, Katarzyna Kempinska, Tao Wu, Trupta Purohit, EunGi Kim, Brian M. Linhares, Dong Chen, Gloria Jih, Eric Perkey, Huang Huang, Miao He, Bo Wen, Yi Wang, Ke Yu, Stanley Chun-Wei Lee, Gwenn Danet-Desnoyers, Winifred Trotman, Malathi Kandarpa, Anitria Cotton, Omar Abdel-Wahab, Hongwei Lei, Yali Dou, Monica Guzman, Luke Peterson, Tanja A. Gruber, Sarah M. Choi, Duxin Sun, Pingda Ren, Lian-Sheng Li, Yi Liu, Francis J. Burrows, Ivan Maillard, Tomasz Cierpicki, Jolanta Grembecka

×

Graft-versus-host disease of the CNS is mediated by TNF upregulation in microglia
Nimitha R. Mathew, … , Marco Prinz, Robert Zeiser
Nimitha R. Mathew, … , Marco Prinz, Robert Zeiser
Published December 17, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI130272.
View: Text | PDF

Graft-versus-host disease of the CNS is mediated by TNF upregulation in microglia

  • Text
  • PDF
Abstract

Acute graft-versus-host disease (GVHD) can affect the central nervous system (CNS). The role of microglia in CNS-GVHD remains undefined. In agreement with microglia activation, we found that profound morphological changes, MHC-II- and CD80-upregulation occurred upon GVHD induction. RNA-sequencing-based analysis of purified microglial obtained from mice with CNS-GVHD revealed TNF upregulation. Selective TNF gene deletion in microglia of Cx3cr1creER:Tnffl/-mice reduced MHC-II-expression, decreased CNS T-cell infiltrates and VCAM-1+ endothelial cells. GVHD increased microglia TGF-β-activated kinase-1 (TAK1) activation and NF-κB/p38-MAPK-signaling. Selective Tak1-deletion in microglia using Cx3cr1creER:Tak1fl/fl-mice resulted in reduced TNF-production, microglial MHC-II, and improved neurocognitive-activity. Pharmacological TAK1-inhibition reduced TNF-production and MHC-II-expression by microglia, Th1 and Th17 T-cell infiltrates, VCAM-1+ endothelial cells and improved neurocognitive activity, without blocking graft-versus-leukemia effects. Consistent with these findings in mice, we observed increased activation and TNF-production of microglia in the CNS of GVHD-patients. In summary, we prove a role for microglia in CNS-GVHD, identify the TAK1/TNF/MHC-II axis as mediator of CNS-GVHD and provide a novel TAK1 inhibitor-based approach against GVHD-induced neurotoxicity.

Authors

Nimitha R. Mathew, Janaki M. Vinnakota, Petya Apostolova, Daniel Erny, Shaima’a Hamarsheh, Geoffroy Andrieux, Jung-Seok Kim, Kathrin Hanke, Tobias Goldmann, Louise Chappell-Maor, Nadia El-Khawanky, Gabriele Ihorst, Dominik Schmidt, Justus Duyster, Jürgen Finke, Thomas Blank, Melanie Boerries, Bruce R. Blazar, Steffen Jung, Marco Prinz, Robert Zeiser

×

Myalgic encephalomyelitis/chronic fatigue syndrome patients exhibit altered T cell metabolism and cytokine associations
Alexandra H. Mandarano, … , C. Gunnar Gottschalk, Maureen R. Hanson
Alexandra H. Mandarano, … , C. Gunnar Gottschalk, Maureen R. Hanson
Published December 12, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI132185.
View: Text | PDF

Myalgic encephalomyelitis/chronic fatigue syndrome patients exhibit altered T cell metabolism and cytokine associations

  • Text
  • PDF
Abstract

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease with no known cause or mechanism. There is an increasing appreciation for the role of immune and metabolic dysfunction in the disease. ME/CFS has historically presented in outbreaks, often has a flu-like onset, and results in inflammatory symptoms. Patients suffer from severe fatigue and post-exertional malaise. There is little known about the metabolism of specific immune cells in ME/CFS patients. To investigate immune metabolism in ME/CFS, we isolated CD4+ and CD8+ T cells from 53 ME/CFS patients and 45 healthy controls. We analyzed glycolysis and mitochondrial respiration in resting and activated T cells, along with markers related to cellular metabolism, and plasma cytokines. We found that ME/CFS CD8+ T cells have reduced mitochondrial membrane potential compared to healthy controls. Both CD4+ and CD8+ T cells from ME/CFS patients had reduced glycolysis at rest, while CD8+ T cells also had reduced glycolysis following activation. ME/CFS patients had significant correlations between measures of T cell metabolism and plasma cytokine abundance that differed from healthy control subjects. Our data indicate that patients have impaired T cell metabolism consistent with ongoing immune alterations in ME/CFS that may illuminate the mechanism behind this disease.

Authors

Alexandra H. Mandarano, Jessica Maya, Ludovic Giloteaux, Daniel L. Peterson, Marco Maynard, C. Gunnar Gottschalk, Maureen R. Hanson

×

Glibenclamide reverses cardiovascular abnormalities of Cantu Syndrome driven by KATP channel overactivity
Conor McClenaghan, … , Maria S. Remedi, Colin G. Nichols
Conor McClenaghan, … , Maria S. Remedi, Colin G. Nichols
Published December 10, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI130571.
View: Text | PDF

Glibenclamide reverses cardiovascular abnormalities of Cantu Syndrome driven by KATP channel overactivity

  • Text
  • PDF
Abstract

Cantu Syndrome (CS) is a complex disorder caused by gain-of-function (GoF) mutations in ABCC9 and KCNJ8, which encode the SUR2 and Kir6.1 subunits, respectively, of vascular smooth muscle (VSM) KATP channels. CS includes dilated vasculature, marked cardiac hypertrophy, and other cardiovascular abnormalities. There is currently no targeted therapy, and it is unknown whether cardiovascular features can be reversed once manifest. Using combined transgenic and pharmacological approaches in a knock-in mouse model of CS, we have shown that reversal of vascular and cardiac phenotypes can be achieved (1) by genetic downregulation of KATP channel activity specifically in VSM, and (2) by chronic administration of the clinically-used KATP channel inhibitor, glibenclamide. These findings demonstrate (i) that VSM KATP channel GoF underlies CS cardiac enlargement, (ii) reversibility of CS-associated abnormalities and (iii) evidence of in vivo efficacy of glibenclamide as a therapeutic agent in CS.

Authors

Conor McClenaghan, Yan Huang, Zihan Yan, Theresa Harter, Carmen M. Halabi, Rod Chalk, Attila Kovacs, Gijs van Haaften, Maria S. Remedi, Colin G. Nichols

×

CD8+ T cells target cerebrovasculature in children with cerebral malaria
Brittany A. Riggle, … , Dorian B. McGavern, Susan K. Pierce
Brittany A. Riggle, … , Dorian B. McGavern, Susan K. Pierce
Published December 10, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI133474.
View: Text | PDF

CD8+ T cells target cerebrovasculature in children with cerebral malaria

  • Text
  • PDF
Abstract

BACKGROUND. Cerebral malaria (CM) accounts for nearly 400,000 deaths annually in African children. Current dogma suggests that CM results from infected RBC (iRBC) sequestration in the brain microvasculature and resulting sequelae. Therapies targeting these events have been unsuccessful; findings in experimental models suggest that CD8+ T cells drive disease pathogenesis. However, these data have largely been ignored because corroborating evidence in humans is lacking. This work fills a critical gap in our understanding of CM pathogenesis that is impeding development of therapeutics. METHODS. Using multiplex immunohistochemistry, we characterized cerebrovascular immune cells in brain sections from 34 children who died from CM or other causes. Children were grouped by clinical diagnosis (CM+ or –), iRBC sequestration (Seqhi, lo, or 0) and HIV status (HIV+ or –). RESULTS. We identified effector CD3+CD8+ T cells engaged on the cerebrovasculature in 69% of CM+ HIV– children. The number of intravascular CD3+CD8+ T cells was influenced by CM status (CM+ vs –, P = 0.004) and sequestration level (Seqhi > lo, P = 0.010). HIV co-infection significantly increased T cell numbers and shifted cells from an intravascular (P = 0.004) to perivascular (P < 0.0001) distribution. CONCLUSION. Within the studied cohort, CM is associated with cerebrovascular engagement of CD3+CD8+ T cells, which is exacerbated by HIV coinfection. Thus, CD3+CD8+ T cells are highly promising targets for CM adjunctive therapy, opening new avenues for the treatment of this deadly disease. FUNDING. This research was supported by the Intramural Research Program of the National Institutes of Health.

Authors

Brittany A. Riggle, Monica Manglani, Dragan Maric, Kory R. Johnson, Myoung-Hwa Lee, Osorio Lopes Abath Neto, Terrie E. Taylor, Karl B. Seydel, Avindra Nath, Louis H. Miller, Dorian B. McGavern, Susan K. Pierce

×
  • ← Previous
  • 1
  • 2
  • …
  • 37
  • 38
  • 39
  • …
  • 76
  • 77
  • Next →

No posts were found with this tag.

Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts