Acute graft-versus-host disease (GvHD) is a serious complication of allogeneic hematopoietic cell transplantation (allo-HCT) that results from donor allogeneic T cell attack on host tissues. Based on previous work implicating immune cell–derived C3a and C5a as regulators of T cell immunity, we examined the effects of locally produced C3a and C5a on murine T cell–mediated GvHD. We found that total body irradiation, a conditioning regimen required to permit engraftment of allo-HCT, caused upregulation and activation of alternative pathway complement components by recipient APCs. Allo-HCT with decay accelerating factor–null (Daf1–/–) host BM and Daf1–/– donor lymphocytes led to exacerbated GvHD outcome and resulted in splenic and organ-infiltrating T cell expansion. T cells deficient in C3a receptor (C3aR) and/or C5a receptor (C5aR) responded weakly in allogeneic hosts and exhibited limited ability to induce GvHD. Using a clinically relevant treatment strategy, we showed that pharmacological C5aR blockade reduced GvHD morbidity. Our data mechanistically link APC-derived complement to T cell–mediated GvHD and support complement inhibition as a therapeutic strategy for GvHD in humans.
Wing-Hong Kwan, Daigo Hashimoto, Estela Paz-Artal, Katya Ostrow, Melanie Greter, Hugo Raedler, M. Edward Medof, Miriam Merad, Peter S. Heeger
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.