Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer, presents a clinical challenge in developing effective treatment options. In this issue of the JCI, Zeng et al. demonstrate a provocative and promising therapeutic strategy for TNBC by leveraging the metabolic vulnerabilities presented by methylthioadenosine phosphorylase (MTAP) deletion to genotoxic stress inducers, such as poly (ADP-ribose) polymerase inhibitors (PARPi). They found that combining MTAP deletion or inhibition with PARPi was highly effective in brain metastatic TNBC where the methionine-limited environment further enhanced this combination. This approach underscores the importance of targeting metabolic vulnerabilities in the development of personalized cancer therapies.
Samyuktha Suresh, James M. Ford
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.