Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Submit a comment

Microglia complement astrocytes in neuromyelitis optica
Zahra Moinfar, Scott S. Zamvil
Zahra Moinfar, Scott S. Zamvil
Published June 22, 2020
Citation Information: J Clin Invest. 2020;130(8):3961-3964. https://doi.org/10.1172/JCI138804.
View: Text | PDF
Commentary

Microglia complement astrocytes in neuromyelitis optica

  • Text
  • PDF
Abstract

Neuromyelitis optica (NMO) is a central nervous system (CNS) inflammatory autoimmune disease caused by antibodies against aquaporin-4 (AQP4) expressed on astrocytes. Binding of AQP4-specific antibodies (NMO-IgG) triggers activation of the complement cascade, which is responsible for astrocyte loss and secondary demyelination. Although the role for the cytolytic complement proteins in astrocyte destruction in NMO is well established, little is known regarding the initial phase of astrocyte injury. In this issue of the JCI, Chen and colleagues evaluated the precytolytic phase when NMO-IgG binds astrocytes in vivo in the absence of exogenous complement. NMO-IgG alone caused astrocyte activation and AQP4 loss. Surprisingly, microglia, CNS-resident innate immune cells that produce endogenous complement, were required for clinical manifestations of disease, a finding that suggests microglia may serve as a therapeutic target in NMO.

Authors

Zahra Moinfar, Scott S. Zamvil

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts