Genome-wide association studies (GWAS) have provided a wealth of information on potential disease-associated genes in the human population. In particular, several loci have been associated with type 2 diabetes (T2D). However, due to the complexity of the disease, it has been a challenge to unravel the exact effects of specific loci on T2D pathogenesis. In this issue of the JCI, Keller and colleagues developed a systems genetic approach to identify insulin secretion–associated genes in nondiabetic mice followed by tissue-level and functional phenotyping. Several of the loci identified were syntenic with human T2D-related loci, indicating that this approach may be feasible for discerning genetic variation in nondiabetic individuals that may lead to the development of T2D.
Mark A. Herman, Jonathan E. Campbell, David A. D’Alessio
Guidelines: The Editorial Board will only consider letters that we deem relevant and of interest to our readers. We will not post data that have not been subjected to peer review, nor will we post letters that are essentially a reiteration of another letter. We reserve the right to edit any letter for length, content, and clarity. Authors will be notified by e-mail if their letters were accepted. No appeals will be considered.
Specific requirements: All letters must be 400 words or fewer. You may enter the letter as plain text or HTML. The author's name and e-mail address are required, and will be posted with the letter. All possible conflicts of interest must be noted, even if they are not posted. If you wish to include a figure (keep in mind that non-peer-reviewed data will not be posted), please contact the editors directly at editors@the-jci.org.