Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Inherited Methylmalonyl CoA Mutase Apoenzyme Deficiency in Human Fibroblasts: EVIDENCE FOR ALLELIC HETEROGENEITY, GENETIC COMPOUNDS, AND CODOMINANT EXPRESSION
Huntington F. Willard, Leon E. Rosenberg
Huntington F. Willard, Leon E. Rosenberg
Published March 1, 1980
Citation Information: J Clin Invest. 1980;65(3):690-698. https://doi.org/10.1172/JCI109715.
View: Text | PDF

Inherited Methylmalonyl CoA Mutase Apoenzyme Deficiency in Human Fibroblasts: EVIDENCE FOR ALLELIC HETEROGENEITY, GENETIC COMPOUNDS, AND CODOMINANT EXPRESSION

  • Text
  • PDF
Abstract

We have measured and characterized methylmalonyl coenzyme A (CoA) mutase activity in extracts of cultured human fibroblasts from 23 patients with inherited deficiency of the mutase apoenzyme and from eight obligate heterozygotes for this defect. The mutant cell lines fall into two categories. Those without detectable residual mutase activity in cell extracts (>0.1% of control), and whose ability to utilize propionate in intact cells is refractory to supplementation of the culture medium with hydroxocobalamin, are designated mut° mutants. Those with detectable residual activity in cell extracts (∼0.5-50% of control), and whose ability to utilize propionate in intact cells in markedly increased by hydroxocobalamin supplementation, are designated mut− mutants. The mutant enzyme in the mut− mutants exhibits a 50- to 5,000-fold elevated Michaelis constant (Km) for adenosylcobalamin in vitro, a normal Km for methylmalonyl CoA, and a strikingly reduced thermal stability at 45°C relative to control. Mutase from one mut− mutant turns over at a rate three to four times that of control enzyme when cells are grown in hydroxocobalamin-supplemented medium.

Authors

Huntington F. Willard, Leon E. Rosenberg

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts