Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Sympathoadrenal Activity in Fasting Pregnant Rats: DISSOCIATION OF ADRENAL MEDULLARY AND SYMPATHETIC NERVOUS SYSTEM RESPONSES
James B. Young, Lewis Landsberg
James B. Young, Lewis Landsberg
Published July 1, 1979
Citation Information: J Clin Invest. 1979;64(1):109-116. https://doi.org/10.1172/JCI109429.
View: Text | PDF

Sympathoadrenal Activity in Fasting Pregnant Rats: DISSOCIATION OF ADRENAL MEDULLARY AND SYMPATHETIC NERVOUS SYSTEM RESPONSES

  • Text
  • PDF
Abstract

The pattern of urinary catecholamine excretion in fasting differs in pregnant and nonpregnant rats, which suggests that the sympathoadrenal response to fasting is altered by pregnancy. In fasting nonpregnant animals, urinary norepinephrine (NE) excretion decreases and epinephrine (E) excretion remains unchanged, whereas the excretion of both catecholamines rises significantly with refeeding. In contrast, fasting third-trimester pregnant rats exhibit a 420% increase in urinary E and a 345% increase in urinary NE, elevations which fall with refeeding. Specific evaluation of sympathoadrenal activity in fasting pregnant rats reveals stimulation of the adrenal medulla and suppression of sympathetic nerves. In fasting third-trimester rats the adrenal content of E is 37% lower in innervated adrenals as compared with contralateral denervated glands, which indicates the presence of neurally-mediated adrenal medullary activation. Adrenalectomy completely abolishes the fasting-induced rise in urinary E and NE in pregnant rats. Studies with 2-deoxy-D-glucose suggest that stimulation of the adrenal medulla results from hypoglycemia, which is present after 3 d of fasting in pregnant rats (plasma glucose 36.7 mg/dl). Sympathetic nervous system activity, as measured by [3H]NE turnover in the heart, decreases in fasting pregnant rats despite hypoglycemia, a response similar to that seen in fasting nonpregnant animals where plasma glucose is maintained above 50 mg/dl. The calculated NE turnover rate is 44% lower in 2-d fasted pregnant rats than in fed pregnant animals (17.6 ± 1.3 vs. 31.3 ± 1.8 ng NE/heart per h, respectively). Thus adrenal medullary and sympathetic nervous system responses in fasting pregnant rats appear to be dissociated, which suggests that diet-induced changes in sympathetic activity and stimulation of the adrenal medulla by hypoglycemia may be independently regulated.

Authors

James B. Young, Lewis Landsberg

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts