Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Resting Skeletal Muscle Membrane Potential as an Index of Uremic Toxicity: A PROPOSED NEW METHOD TO ASSESS ADEQUACY OF HEMODIALYSIS
James R. Cotton, Terry Woodard, Norman W. Carter, James P. Knochel
James R. Cotton, Terry Woodard, Norman W. Carter, James P. Knochel
View: Text | PDF

Resting Skeletal Muscle Membrane Potential as an Index of Uremic Toxicity: A PROPOSED NEW METHOD TO ASSESS ADEQUACY OF HEMODIALYSIS

  • Text
  • PDF
Abstract

Electrochemical disturbances of skeletal muscle cells in untreated uremia are characterized by an increase in the intracellular sodium and chloride content, a decrease in intracellular potassium, and a low resting membrane potential. In this study, we have reexamined the foregoing and, in addition, have examined the effects of hemodialysis. Three groups of patients were studied. In the first group of 22 uncomplicated uremic patients, whose creatinine clearance (Ccr) ranged from 2 to 12 cm3/min per 1.73 m2, resting transmembrane potential difference (Em) of skeletal muscle cells was measured. In each of the nine patients whose Ccr ranged between 6.3 and 12 cm3/min, the Em was normal (i.e., −90.8±0.9 mV, mean±SEM). However, as Ccr dropped below 6.3 cm/min, the Em became progressively reduced and assumed a linear relationship with the Ccr.

Authors

James R. Cotton, Terry Woodard, Norman W. Carter, James P. Knochel

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts