Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Concentration of l-Thyroxine and l-Triiodothyronine Specifically Bound to Nuclear Receptors in Rat Liver and Kidney: QUANTITATIVE EVIDENCE FAVORING A MAJOR ROLE OF T3 IN THYROID HORMONE ACTION
Martin I. Surks, Jack H. Oppenheimer
Martin I. Surks, Jack H. Oppenheimer
Published September 1, 1977
Citation Information: J Clin Invest. 1977;60(3):555-562. https://doi.org/10.1172/JCI108807.
View: Text | PDF

Concentration of l-Thyroxine and l-Triiodothyronine Specifically Bound to Nuclear Receptors in Rat Liver and Kidney: QUANTITATIVE EVIDENCE FAVORING A MAJOR ROLE OF T3 IN THYROID HORMONE ACTION

  • Text
  • PDF
Abstract

To estimate the relative contribution of l-triiodothyronine (T3) and l-thyroxine (T4) to thyroidal effects, we have measured the concentration of iodothyronine bound to specific hepatic nuclear receptor sites by three different techniques: (a) specific radioimmunoassay after separation of T3 and T4 by preparative paper chromatography; (b) in vivo kinetic approaches as reported previously; and (c) isotopic equilibration. By these three methods, receptor concentration of T3 and T4 in liver was 0.51±0.19 (SD) and 0.08±0.06; 0.52±0.12 and 0.08±0.02; and 0.50±0.13 and 0.10±0.03 pmol/mg DNA, respectively. The percentage contribution of T3 and T4 to total receptor iodothyronine was thus 86.8±9.0 and 13.2±9.4; 86.3±3.5 and 13.7±3.5; and 83.7±5.6 and 16.3±5.6%, respectively. In kidney, specifically bound nuclear T3 and T4 were estimated both by isotopic equilibration and by in vivo kinetic techniques to be 0.28±0.11 and 0.03±0.01 pmol/mg DNA, respectively. Thus, T3 constituted 89.4±3.2% of total receptor iodothyronine in this tissue. No other iodothyronines or analogs were bound to the nuclear sites in either tissue. Kidney and liver nuclear T3 concentrations also were identical to values previously reported with in vivo kinetic techniques. Other studies from this laboratory have suggested that thyroid effect is related to the molar concentration of iodothyronine bound to specific nuclear sites, that the sites are similar in various tissues, and that iodothyronine in plasma is in equilibrium with nuclear T3. If these relationships are assumed, T3 contributes between 85 and 90% of thyroidal effects in the euthyroid rat. The remaining 10-15% of thyroidal effect appears to result from the intrinsic activity of T4.

Authors

Martin I. Surks, Jack H. Oppenheimer

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts