Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Genetics

  • 442 Articles
  • 2 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 35
  • 36
  • 37
  • …
  • 44
  • 45
  • Next →
Prelamin A and lamin A appear to be dispensable in the nuclear lamina
Loren G. Fong, … , Martin O. Bergo, Stephen G. Young
Loren G. Fong, … , Martin O. Bergo, Stephen G. Young
Published March 1, 2006
Citation Information: J Clin Invest. 2006;116(3):743-752. https://doi.org/10.1172/JCI27125.
View: Text | PDF

Prelamin A and lamin A appear to be dispensable in the nuclear lamina

  • Text
  • PDF
Abstract

Lamin A and lamin C, both products of Lmna, are key components of the nuclear lamina. In the mouse, a deficiency in both lamin A and lamin C leads to slow growth, muscle weakness, and death by 6 weeks of age. Fibroblasts deficient in lamins A and C contain misshapen and structurally weakened nuclei, and emerin is mislocalized away from the nuclear envelope. The physiologic rationale for the existence of the 2 different Lmna products lamin A and lamin C is unclear, although several reports have suggested that lamin A may have particularly important functions, for example in the targeting of emerin and lamin C to the nuclear envelope. Here we report the development of lamin C–only mice (Lmna+/+), which produce lamin C but no lamin A or prelamin A (the precursor to lamin A). Lmna+/+ mice were entirely healthy, and Lmna+/+ cells displayed normal emerin targeting and exhibited only very minimal alterations in nuclear shape and nuclear deformability. Thus, at least in the mouse, prelamin A and lamin A appear to be dispensable. Nevertheless, an accumulation of farnesyl–prelamin A (as occurs with a deficiency in the prelamin A processing enzyme Zmpste24) caused dramatically misshapen nuclei and progeria-like disease phenotypes. The apparent dispensability of prelamin A suggested that lamin A–related progeroid syndromes might be treated with impunity by reducing prelamin A synthesis. Remarkably, the presence of a single LmnaLCO allele eliminated the nuclear shape abnormalities and progeria-like disease phenotypes in Zmpste24–/– mice. Moreover, treating Zmpste24–/– cells with a prelamin A–specific antisense oligonucleotide reduced prelamin A levels and significantly reduced the frequency of misshapen nuclei. These studies suggest a new therapeutic strategy for treating progeria and other lamin A diseases.

Authors

Loren G. Fong, Jennifer K. Ng, Jan Lammerding, Timothy A. Vickers, Margarita Meta, Nathan Coté, Bryant Gavino, Xin Qiao, Sandy Y. Chang, Stephanie R. Young, Shao H. Yang, Colin L. Stewart, Richard T. Lee, C. Frank Bennett, Martin O. Bergo, Stephen G. Young

×

Lanosterol synthase mutations cause cholesterol deficiency–associated cataracts in the Shumiya cataract rat
Masayuki Mori, … , Keiichi Higuchi, Seigo Shumiya
Masayuki Mori, … , Keiichi Higuchi, Seigo Shumiya
Published February 1, 2006
Citation Information: J Clin Invest. 2006;116(2):395-404. https://doi.org/10.1172/JCI20797.
View: Text | PDF

Lanosterol synthase mutations cause cholesterol deficiency–associated cataracts in the Shumiya cataract rat

  • Text
  • PDF
Abstract

The Shumiya cataract rat (SCR) is a hereditary cataractous strain. It is thought that the continuous occurrence of poorly differentiated epithelial cells at the bow area of the lens forms the pathophysiological basis for cataract formation in SCRs. In this study, we attempted to identify the genes associated with cataract formation in SCRs by positional cloning. Genetic linkage analysis revealed the presence of a major cataract locus on chromosome 20 as well as a locus on chromosome 15 that partially suppressed cataract onset. Hypomorphic mutations were identified in genes for lanosterol synthase (Lss) on chromosome 20 and farnesyl diphosphate farnesyl transferase 1 (Fdft1) on chromosome 15, both of which function in the cholesterol biosynthesis pathway. A null mutation for Lss was also identified. Cataract onset was associated with the specific combination of Lss and Fdft1 mutant alleles that decreased cholesterol levels in cataractous lenses to about 57% of normal. Thus, cholesterol insufficiency may underlie the deficient proliferation of lens epithelial cells in SCRs, which results in the loss of homeostatic epithelial cell control of the underlying fiber cells and eventually leads to cataractogenesis. These findings may have some relevance to other types of cataracts, inborn defects of cholesterol synthesis, and the effects of cholesterol-lowering medication.

Authors

Masayuki Mori, Guixin Li, Ikuro Abe, Jun Nakayama, Zhanjun Guo, Jinko Sawashita, Tohru Ugawa, Shoko Nishizono, Tadao Serikawa, Keiichi Higuchi, Seigo Shumiya

×

Mitochondrial aldehyde dehydrogenase-2 (ALDH2) Glu504Lys polymorphism contributes to the variation in efficacy of sublingual nitroglycerin
Yifeng Li, … , Wei Huang, Li Jin
Yifeng Li, … , Wei Huang, Li Jin
Published February 1, 2006
Citation Information: J Clin Invest. 2006;116(2):506-511. https://doi.org/10.1172/JCI26564.
View: Text | PDF

Mitochondrial aldehyde dehydrogenase-2 (ALDH2) Glu504Lys polymorphism contributes to the variation in efficacy of sublingual nitroglycerin

  • Text
  • PDF
Abstract

Glyceryl trinitrate (GTN), also known as nitroglycerin, has been used to treat angina and heart failure for more than 130 years. Recently, it was shown that mitochondrial aldehyde dehydrogenase-2 (ALDH2) is responsible for formation of NO, the metabolite needed for GTN efficacy. In the present study, we show that the common G-to-A polymorphism in exon 12 of ALDH2 — resulting in a Glu504Lys replacement that virtually eliminates ALDH2 activity in both heterozygotes and homozygotes — is associated with a lack of efficacy of sublingual GTN in Chinese subjects. We also show that the catalytic efficiency (Vmax/Km) of GTN metabolism of the Glu504 protein is approximately 10-fold higher than that of the Lys504 enzyme. We conclude that the presence of the Lys504 allele contributes in large part to the lack of an efficacious clinical response to nitroglycerin; we recommend that this genetic factor be considered when administering nitroglycerin to patients, especially Asians, 30–50% of whom possess the inactive ALDH2*2 mutant allele.

Authors

Yifeng Li, Dandan Zhang, Wei Jin, Chunhong Shao, Pengrong Yan, Congjian Xu, Haihui Sheng, Yan Liu, Jinde Yu, Yuying Xie, Yingnan Zhao, Daru Lu, Daniel W. Nebert, Donald C. Harrison, Wei Huang, Li Jin

×

Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo
Oliver G. McDonald, … , Mark H. Hoofnagle, Gary K. Owens
Oliver G. McDonald, … , Mark H. Hoofnagle, Gary K. Owens
Published January 4, 2006
Citation Information: J Clin Invest. 2006;116(1):36-48. https://doi.org/10.1172/JCI26505.
View: Text | PDF

Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo

  • Text
  • PDF
Abstract

Precise control of SMC transcription plays a major role in vascular development and pathophysiology. Serum response factor (SRF) controls SMC gene transcription via binding to CArG box DNA sequences found within genes that exhibit SMC-restricted expression. However, the mechanisms that regulate SRF association with CArG box DNA within native chromatin of these genes are unknown. Here we report that SMC-restricted binding of SRF to murine SMC gene CArG box chromatin is associated with patterns of posttranslational histone modifications within this chromatin that are specific to the SMC lineage in culture and in vivo, including methylation and acetylation to histone H3 and H4 residues. We found that the promyogenic SRF coactivator myocardin increased SRF association with methylated histones and CArG box chromatin during activation of SMC gene expression. In contrast, the myogenic repressor Kruppel-like factor 4 recruited histone H4 deacetylase activity to SMC genes and blocked SRF association with methylated histones and CArG box chromatin during repression of SMC gene expression. Finally, we observed deacetylation of histone H4 coupled with loss of SRF binding during suppression of SMC differentiation in response to vascular injury. Taken together, these findings provide novel evidence that SMC-selective epigenetic control of SRF binding to chromatin plays a key role in regulation of SMC gene expression in response to pathophysiological stimuli in vivo.

Authors

Oliver G. McDonald, Brian R. Wamhoff, Mark H. Hoofnagle, Gary K. Owens

×

Deficits in amygdaloid cAMP-responsive element–binding protein signaling play a role in genetic predisposition to anxiety and alcoholism
Subhash C. Pandey, … , Adip Roy, Tiejun Xu
Subhash C. Pandey, … , Adip Roy, Tiejun Xu
Published October 3, 2005
Citation Information: J Clin Invest. 2005;115(10):2762-2773. https://doi.org/10.1172/JCI24381.
View: Text | PDF | Corrigendum

Deficits in amygdaloid cAMP-responsive element–binding protein signaling play a role in genetic predisposition to anxiety and alcoholism

  • Text
  • PDF
Abstract

We investigated the role of cAMP-responsive element–binding protein (CREB) in genetic predisposition to anxiety and alcohol-drinking behaviors using alcohol-preferring (P) and -nonpreferring (NP) rats. The levels of CREB, phosphorylated CREB, and neuropeptide Y (NPY) were innately lower in the central amygdala (CeA) and medial amygdala (MeA), but not in the basolateral amygdala (BLA), of P rats compared with NP rats. P rats displayed higher baseline anxiety-like behaviors and consumed higher amounts of alcohol compared with NP rats. Ethanol injection or voluntary intake reduced the higher anxiety levels in P rats. Ethanol also increased CREB function in the CeA and MeA, but not in the BLA, of P rats. Infusion of the PKA activator Sp-cAMP or NPY into the CeA decreased the alcohol intake and anxiety-like behaviors of P rats. PKA activator infusion also increased CREB function in the CeA of P rats. On the other hand, ethanol injection or voluntary intake did not produce any changes either in anxiety levels or on CREB function in the amygdaloid structures of NP rats. Interestingly, infusion of the PKA inhibitor Rp-cAMP into the CeA provoked anxiety-like behaviors and increased alcohol intake in NP rats. PKA inhibitor decreased CREB function in the CeA of NP rats. These novel results provide the first evidence to our knowledge that decreased CREB function in the CeA may be operative in maintaining the high anxiety and excessive alcohol-drinking behaviors of P rats.

Authors

Subhash C. Pandey, Huaibo Zhang, Adip Roy, Tiejun Xu

×

A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy
Isla Ogilvie, … , Nancy G. Kennaway, Eric A. Shoubridge
Isla Ogilvie, … , Nancy G. Kennaway, Eric A. Shoubridge
Published October 3, 2005
Citation Information: J Clin Invest. 2005;115(10):2784-2792. https://doi.org/10.1172/JCI26020.
View: Text | PDF

A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy

  • Text
  • PDF
Abstract

NADH:ubiquinone oxidoreductase (complex I) deficiency is a common cause of mitochondrial oxidative phosphorylation disease. It is associated with a wide range of clinical phenotypes in infants, including Leigh syndrome, cardiomyopathy, and encephalomyopathy. In at least half of patients, enzyme deficiency results from a failure to assemble the holoenzyme complex; however, the molecular chaperones required for assembly of the mammalian enzyme remain unknown. Using whole genome subtraction of yeasts with and without a complex I to generate candidate assembly factors, we identified a paralogue (B17.2L) of the B17.2 structural subunit. We found a null mutation in B17.2L in a patient with a progressive encephalopathy and showed that the associated complex I assembly defect could be completely rescued by retroviral expression of B17.2L in patient fibroblasts. An anti-B17.2L antibody did not associate with the holoenzyme complex but specifically recognized an 830-kDa subassembly in several patients with complex I assembly defects and coimmunoprecipitated a subset of complex I structural subunits from normal human heart mitochondria. These results demonstrate that B17.2L is a bona fide molecular chaperone that is essential for the assembly of complex I and for the normal function of the nervous system.

Authors

Isla Ogilvie, Nancy G. Kennaway, Eric A. Shoubridge

×

An interstitial deletion-insertion involving chromosomes 2p25.3 and Xq27.1, near SOX3, causes X-linked recessive hypoparathyroidism
Michael R. Bowl, … , Michael P. Whyte, Rajesh V. Thakker
Michael R. Bowl, … , Michael P. Whyte, Rajesh V. Thakker
Published October 3, 2005
Citation Information: J Clin Invest. 2005;115(10):2822-2831. https://doi.org/10.1172/JCI24156.
View: Text | PDF

An interstitial deletion-insertion involving chromosomes 2p25.3 and Xq27.1, near SOX3, causes X-linked recessive hypoparathyroidism

  • Text
  • PDF
Abstract

X-linked recessive hypoparathyroidism, due to parathyroid agenesis, has been mapped to a 906-kb region on Xq27 that contains 3 genes (ATP11C, U7snRNA, and SOX3), and analyses have not revealed mutations. We therefore characterized this region by combined analysis of single nucleotide polymorphisms and sequence-tagged sites. This identified a 23- to 25-kb deletion, which did not contain genes. However, DNA fiber–FISH and pulsed-field gel electrophoresis revealed an approximately 340-kb insertion that replaced the deleted fragment. Use of flow-sorted X chromosome–specific libraries and DNA sequence analyses revealed that the telomeric and centromeric breakpoints on X were, respectively, approximately 67 kb downstream of SOX3 and within a repetitive sequence. Use of a monochromosomal somatic cell hybrid panel and metaphase-FISH mapping demonstrated that the insertion originated from 2p25 and contained a segment of the SNTG2 gene that lacked an open reading frame. However, the deletion-insertion [del(X)(q27.1) inv ins (X;2)(q27.1;p25.3)], which represents a novel abnormality causing hypoparathyroidism, could result in a position effect on SOX3 expression. Indeed, SOX3 expression was demonstrated, by in situ hybridization, in the developing parathyroid tissue of mouse embryos between 10.5 and 15.5 days post coitum. Thus, our results indicate a likely new role for SOX3 in the embryonic development of the parathyroid glands.

Authors

Michael R. Bowl, M. Andrew Nesbit, Brian Harding, Elaine Levy, Andrew Jefferson, Emanuela Volpi, Karine Rizzoti, Robin Lovell-Badge, David Schlessinger, Michael P. Whyte, Rajesh V. Thakker

×

Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation
Renaud Dentin, … , Jean Girard, Catherine Postic
Renaud Dentin, … , Jean Girard, Catherine Postic
Published October 3, 2005
Citation Information: J Clin Invest. 2005;115(10):2843-2854. https://doi.org/10.1172/JCI25256.
View: Text | PDF

Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation

  • Text
  • PDF
Abstract

Dietary polyunsaturated fatty acids (PUFAs) are potent inhibitors of hepatic glycolysis and lipogenesis. Recently, carbohydrate-responsive element–binding protein (ChREBP) was implicated in the regulation by glucose of glycolytic and lipogenic genes, including those encoding L-pyruvate kinase (L-PK) and fatty acid synthase (FAS). The aim of our study was to assess the role of ChREBP in the control of L-PK and FAS gene expression by PUFAs. We demonstrated in mice, both in vivo and in vitro, that PUFAs [linoleate (C18:2), eicosapentanoic acid (C20:5), and docosahexaenoic acid (C22:6)] suppressed ChREBP activity by increasing ChREBP mRNA decay and by altering ChREBP translocation from the cytosol to the nucleus, independently of an activation of the AMP-activated protein kinase, previously shown to regulate ChREBP activity. In contrast, saturated [stearate (C18)] and monounsaturated fatty acids [oleate (C18:1)] had no effect. Since glucose metabolism via the pentose phosphate pathway is determinant for ChREBP nuclear translocation, the decrease in xylulose 5-phosphate concentrations caused by a PUFA diet favors a PUFA-mediated inhibition of ChREBP translocation. In addition, overexpression of a constitutive nuclear ChREBP isoform in cultured hepatocytes significantly reduced the PUFA inhibition of both L-PK and FAS gene expression. Our results demonstrate that the suppressive effect of PUFAs on these genes is primarily caused by an alteration of ChREBP nuclear translocation. In conclusion, we describe a novel mechanism to explain the inhibitory effect of PUFAs on the genes encoding L-PK and FAS and demonstrate that ChREBP is a pivotal transcription factor responsible for coordinating the PUFA suppression of glycolytic and lipogenic genes.

Authors

Renaud Dentin, Fadila Benhamed, Jean-Paul Pégorier, Fabienne Foufelle, Benoit Viollet, Sophie Vaulont, Jean Girard, Catherine Postic

×

Apoa5 Q139X truncation predisposes to late-onset hyperchylomicronemia due to lipoprotein lipase impairment
Christophe Marçais, … , Vincent Durlach, Philippe Moulin
Christophe Marçais, … , Vincent Durlach, Philippe Moulin
Published October 3, 2005
Citation Information: J Clin Invest. 2005;115(10):2862-2869. https://doi.org/10.1172/JCI24471.
View: Text | PDF

Apoa5 Q139X truncation predisposes to late-onset hyperchylomicronemia due to lipoprotein lipase impairment

  • Text
  • PDF
Abstract

While type 1 hyperlipidemia is associated with lipoprotein lipase or apoCII deficiencies, the etiology of type 5 hyperlipidemia remains largely unknown. We explored a new candidate gene, APOA5, for possible causative mutations in a pedigree of late-onset, vertically transmitted hyperchylomicronemia. A heterozygous Q139X mutation in APOA5 was present in both the proband and his affected son but was absent in 200 controls. It was subsequently found in 2 of 140 cases of hyperchylomicronemia. Haplotype analysis suggested the new Q139X as a founder mutation. Family studies showed that 5 of 9 total Q139X carriers had hyperchylomicronemia, 1 patient being homozygote. Severe hypertriglyceridemia in 8 heterozygotes was strictly associated with the presence on the second allele of 1 of 2 previously described triglyceride-raising minor APOA5 haplotypes. Furthermore, ultracentrifugation fraction analysis indicated in carriers an altered association of Apoa5 truncated and WT proteins to lipoproteins, whereas in normal plasma, Apoa5 associated with VLDL and HDL/LDL fractions. APOB100 kinetic studies in 3 severely dyslipidemic patients with Q139X revealed a major impairment of VLDL catabolism. Lipoprotein lipase activity and mass were dramatically reduced in dyslipidemic carriers, leading to severe lipolysis defect. Our observations strongly support in humans a role for APOA5 in lipolysis regulation and in familial hyperchylomicronemia.

Authors

Christophe Marçais, Bruno Verges, Sybil Charrière, Valérie Pruneta, Micheline Merlin, Stéphane Billon, Laurence Perrot, Jocelyne Drai, Agnès Sassolas, Len A. Pennacchio, Jamila Fruchart-Najib, Jean-Charles Fruchart, Vincent Durlach, Philippe Moulin

×

Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2
Petra Seemann, … , Petra Knaus, Stefan Mundlos
Petra Seemann, … , Petra Knaus, Stefan Mundlos
Published September 1, 2005
Citation Information: J Clin Invest. 2005;115(9):2373-2381. https://doi.org/10.1172/JCI25118.
View: Text | PDF

Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2

  • Text
  • PDF
Abstract

Here we describe 2 mutations in growth and differentiation factor 5 (GDF5) that alter receptor-binding affinities. They cause brachydactyly type A2 (L441P) and symphalangism (R438L), conditions previously associated with mutations in the GDF5 receptor bone morphogenetic protein receptor type 1b (BMPR1B) and the BMP antagonist NOGGIN, respectively. We expressed the mutant proteins in limb bud micromass culture and treated ATDC5 and C2C12 cells with recombinant GDF5. Our results indicated that the L441P mutant is almost inactive. The R438L mutant, in contrast, showed increased biological activity when compared with WT GDF5. Biosensor interaction analyses revealed loss of binding to BMPR1A and BMPR1B ectodomains for the L441P mutant, whereas the R438L mutant showed normal binding to BMPR1B but increased binding to BMPR1A, the receptor normally activated by BMP2. The binding to NOGGIN was normal for both mutants. Thus, the brachydactyly type A2 phenotype (L441P) is caused by inhibition of the ligand-receptor interaction, whereas the symphalangism phenotype (R438L) is caused by a loss of receptor-binding specificity, resulting in a gain of function by the acquisition of BMP2-like properties. The presented experiments have identified some of the main determinants of GDF5 receptor-binding specificity in vivo and open new prospects for generating antagonists and superagonists of GDF5.

Authors

Petra Seemann, Raphaela Schwappacher, Klaus W. Kjaer, Deborah Krakow, Katarina Lehmann, Katherine Dawson, Sigmar Stricker, Jens Pohl, Frank Plöger, Eike Staub, Joachim Nickel, Walter Sebald, Petra Knaus, Stefan Mundlos

×
  • ← Previous
  • 1
  • 2
  • …
  • 35
  • 36
  • 37
  • …
  • 44
  • 45
  • Next →
A hop, exon skip, and a jump for muscular dystrophy
Quan Gao and colleagues developed an exon skipping strategy that generates a truncated, functional γ-sarcoglycan protein and improves defects in muscular dystrophy models…
Published October 12, 2015
Scientific Show StopperGenetics

A curve in the spine
Shunmoogum Patten and colleagues identify variants of POC5 that are associated with idiopathic scoliosis…
Published February 2, 2015
Scientific Show StopperGenetics
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts