Hepatitis B virus (HBV) infection can be managed clinically with nucleos(t)ide therapy, which suppresses viral replication; however, these drugs must often be used long term, as they are unable to fully eliminate the virus. For many patients, discontinuation of treatment results in viral resurgence and hepatic flare, and there is not a reliable way to identify those individuals that can be successfully taken off nucleos(t)ide therapy. In this issue of the JCI, Rivino and colleagues report on their use of a multipronged approach to investigate potential biomarkers indicative of HBV-infected patients who can safely stop nucleos(t)ide therapy. The authors identified a population of HBV-specific, PD1-positive T cells that was present in HBV-infected patients who successfully discontinued treatment without hepatic flare, but not in those that developed flare upon treatment cessation. Together, these results support the concept that PD1+ cells may play an important role in viral control, the further evaluation of this T cell subset in preventing hepatic flare, and the development of assays to better detect this PD1+ T cell population in HBV-infected patients on nucleos(t)ide therapy.
Eleanor Barnes
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 338 | 25 |
121 | 11 | |
Figure | 76 | 0 |
Citation downloads | 49 | 0 |
Totals | 584 | 36 |
Total Views | 620 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.