Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Tumor-infiltrating BRAFV600E-specific CD4+ T cells correlated with complete clinical response in melanoma
Joshua R. Veatch, Sylvia M. Lee, Matthew Fitzgibbon, I-Ting Chow, Brenda Jesernig, Tom Schmitt, Ying Ying Kong, Julia Kargl, A. McGarry Houghton, John A. Thompson, Martin McIntosh, William W. Kwok, Stanley R. Riddell
Joshua R. Veatch, Sylvia M. Lee, Matthew Fitzgibbon, I-Ting Chow, Brenda Jesernig, Tom Schmitt, Ying Ying Kong, Julia Kargl, A. McGarry Houghton, John A. Thompson, Martin McIntosh, William W. Kwok, Stanley R. Riddell
View: Text | PDF
Concise Communication Immunology Oncology

Tumor-infiltrating BRAFV600E-specific CD4+ T cells correlated with complete clinical response in melanoma

  • Text
  • PDF
Abstract

T cells specific for neoantigens encoded by mutated genes in cancers are increasingly recognized as mediators of tumor destruction after immune checkpoint inhibitor therapy or adoptive cell transfer. Unfortunately, most neoantigens result from random mutations and are patient specific, and some cancers contain few mutations to serve as potential antigens. We describe a patient with stage IV acral melanoma who achieved a complete response following adoptive transfer of tumor-infiltrating lymphocytes (TILs). Tumor exome sequencing surprisingly revealed fewer than 30 nonsynonymous somatic mutations, including oncogenic BRAFV600E. Analysis of the specificity of TILs identified rare CD4+ T cells specific for BRAFV600E and diverse CD8+ T cells reactive to nonmutated self-antigens. These specificities increased in blood after TIL transfer and persisted long-term, suggesting they contributed to the effective antitumor immune response. Gene transfer of the BRAFV600E-specific T cell receptor (TCR) conferred recognition of class II MHC–positive cells expressing the BRAF mutation. Therapy with TCR-engineered BRAFV600E-specific CD4+ T cells may have direct antitumor effects and augment CD8+ T cell responses to self- and/or mutated tumor antigens in patients with BRAF-mutated cancers.

Authors

Joshua R. Veatch, Sylvia M. Lee, Matthew Fitzgibbon, I-Ting Chow, Brenda Jesernig, Tom Schmitt, Ying Ying Kong, Julia Kargl, A. McGarry Houghton, John A. Thompson, Martin McIntosh, William W. Kwok, Stanley R. Riddell

×

Figure 4

A synthetic TCR derived from the dominant Va and Vb sequences recognizes cells expressing BRAFV600E.

Options: View larger image (or click on image) Download as PowerPoint
A synthetic TCR derived from the dominant Va and Vb sequences recognizes...
(A) Frequency of TCRB Va sequences in PBMCs after mock stimulation or BRAFV600E stimulation, or after sorting of IFN-γ–secreting cells after BRAFV600E peptide restimulation. CDR3 sequences: CAVRRGNNDMRF (blue), CIVRAYSGYSTLTF (red), CAVITLNNNAGNMLTF (purple), CAVTSNAGKSTF (green). (B) IFN-γ production by CD4+ T cells from 2 normal donors transduced with a synthetic TCR construct and incubated with an HLA-DQB1*0302 B cell line 1331 pulsed with BRAFV600E peptide or transfected with mRNA encoding mutant (Mut) or WT BRAF sequences, with 2 technical replicates.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts