Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Old concepts and new developments in the study of platelet aggregation
Zaverio M. Ruggeri
Zaverio M. Ruggeri
Published March 15, 2000
Citation Information: J Clin Invest. 2000;105(6):699-701. https://doi.org/10.1172/JCI9604.
View: Text | PDF
Commentary

Old concepts and new developments in the study of platelet aggregation

  • Text
  • PDF
Abstract

Authors

Zaverio M. Ruggeri

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
Schematic representation of the mechanisms of platelet adhesion and aggr...
Schematic representation of the mechanisms of platelet adhesion and aggregation in flowing blood. In a cylindrical vessel, the velocity profile of particles contained in circulating blood is parabolic; the shear rate decreases from the wall to the center of the lumen inversely to the flow velocity. In a flow field with high shear rate, only GP Ibα interaction with immobilized vWF multimers can initiate the tethering of circulating platelets to the vessel wall and to already adherent platelets. This GP Ibα–dependent interaction supports initially transient bonds, depicted by the ongoing detachment of the 2 top platelets from vWF multimers bound to already activated platelets. The process is amplified by the activation of αIIbβ3, which may occur during the transient tethering or through the action of other receptors that bind collagen or other components of exposed vascular or extravascular surfaces (see also Figure 1). The final result is stable attachment of recruited platelets and irreversible membrane binding of soluble adhesive ligand (fibrinogen and vWF), thus providing the substrate for additional recruitment of nonactivated platelets and leading to thrombus growth. Note that nonactivated αIIbβ3 cannot bind soluble ligands. The bridging effect of fibrinogen, which is required to stabilize platelet aggregation and resist the effects of high shear stress, only occurs after initial tethering of platelets through the interaction of vWF and GP Ibα. At shear rates less than 500–1,000 s–1, the adhesive functions of vWF are no longer indispensable, either for initial attachment to a thrombogenic surface or for aggregation. Thus, even in the absence of vWF, collagen receptors (among others) can permit stable adhesive interactions to form rapidly, and fibrin or fibrinogen can bind to platelets to permit aggregation.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts